
International Journal of Artificial Intelligence & Robotics (IJAIR)                                                           E-ISSN :2686-6269 

Vol.2, No.1, 2020, pp.29-33               29 

 

DOI: 10.25139/ijair.v2i1.2634 

 A LOF K-Means Clustering on Hotspot Data 
R R Muhima1*, M Kurniawan2, O T Pambudi 3  

1,2,3Teknik Informatika ITATS, Arief Rachman Hakim 100, Surabaya, Indonesia  
1ranimuhima@itats.ac.id*; 2muchamadkurniawan@itats.ac.id; 3oktavianpilu@gmail.com 

*corresponding author

 

I. INTRODUCTION 

Clustering is one of the most classical algorithms of data mining methods. This algorithm is broadly utilized in numerous 

areas[1]. Clustering analysis can help distribute high school teachers[2]. Clustering analysis is also used in the field of e-

commerce [3][4][5]. Clustering analysis’s results are not only for developing e-commerce websites but also can help determine 

the good marketing strategy [5]. In the mining sector, clustering also can used to sort out potential areas of mining material [6]. 

In the field of disaster management, clustering analysis of hotspot data is performed as an effort to prevent potential forest and 

land fires [7],[8]. 

K-Means is the most popular of clustering method and is often used today [9]. K-Means has very efficient and strong elasticity 

compilation dealing with big data [3]. However, K-Means has a sensitivity to outliers, and this is a drawback [10].  The LOF 

(Local Outlier Factor) method is one of the outlier removal methods [11]. The representative outliers detection algorithm based 

on density is LOF [12]. Generally, the method of detecting outliers the nearest neighbor measures the absence of outliers in the 

context of distance in other data in the data set.  

This approach risks losing outliers in the data set, where local density varies greatly. The LOF method overcomes this 

disadvantage by considering differences in local density around as the outlier can be measured [13]. LOF method is added to the 

K-Means method for improved performance of K-Means clustering. And this method is called LOF K-Means. In this paper, the 

results of clustering from the K-Means method and the LOF K-Means method are compared based on the Sum of Squared Error 

(SSE) value. 

Both methods were used for clustering hotspot data and determining centroids. Hotspot data is taken from 

https://firms.modaps.eosdis.nasa.gov/active_fire. Why were hotspot data used in this research? Detection and analysis of hotspot 

data are very important to be recognized to avoid forest and land fires [7]. The results of this paper are used for our future 

research studies related to optimizing the suppression of forest and land fires to minimize losses. 

II. METHOD  

A. Hotspot Data 

 A hotspot is a geothermal point indicated as a fire location forest and land. In this paper, the hotspot data utilized was taken 

from https://firms.modaps.eosdis.nasa.gov/active_fire are provided by the National Aeronautics and Space Administration. This 

dataset was taken in the Southeast Asia region for seven days consecutive. The initial dataset obtained consisting of 11 features, 

including spatial, non-spatial, and temporal data. Then two features of spatial data are reduced, latitude, and longitude. 

Clustering is based on these two features. 

B. K-Means 

The most popular of clustering method is K-Means[9]. Dividing n object into k number of clusters so that to obtain minimum 

inter-cluster similarity and maximum intra-cluster similarity is the main purpose of this algorithm. Algorithm of  K-Means [14] 

is as follow: 
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Input: k = number of cluster 

           D = dataset = {d1, d2, d3,…, dn} 

Method: 1. Select k point in dataset D as the beginning centroid. 

 2. The distance between each data point xj and centroid was calculated. In this paper, the distance was calculated using 

Euclidean distance. Equation of Euclidean distance  between  xj and centroid cj, based on equation (1). 

 𝑑(𝑥𝑗, 𝑐𝑗) = √∑ (𝑥𝑗 − 𝑐𝑗)2𝑛
𝑗=1   () 

   Set data point into the centroid, whose distance of data point with centroid is the nearest of all centroids. 

  4. Recalculate the centroid k position if all the objects are placed. 

  5. Repeat steps 2 and 3 until the centroid k position does not change.  

Output: A set of k cluster 

C. LOF (Local Outlier Factor) 

Flowchart determines the LOF value shown in Fig.1. LOF is comparing the local density of an object’s environment with the 

neighboring local density based on equation (2), and (3). An object that has LOF >> 1 is called outlier. While, if an object has 

LOF << 1, the object is not an outlier. A high LOF value indicates that the object has a low density of its environment  [11]. The 

LOF of p(xi, yi) is defined as [12][15]: 

𝐿𝑂𝐹𝑘(𝑝) =
∑

𝑙𝑟𝑑 (𝑜)

𝑙𝑟𝑑 (𝑝)𝑜∈𝑁𝑘−𝑑𝑖𝑠𝑡(𝑝)

|𝑁𝑘−𝑑𝑖𝑠𝑡(𝑝)|
  () 

 𝑙𝑟𝑑(𝑝) = 1/ [
∑ 𝑟𝑒𝑎𝑐ℎ−𝑑𝑖𝑠𝑡𝑘(𝑝,𝑜)𝑜∈𝑁𝑘−𝑑𝑖𝑠𝑡(𝑝)

|𝑁𝑘−𝑑𝑖𝑠𝑡(𝑝)|
]  () 

where, 𝑙𝑟𝑑(𝑝) variable is local reachability density of an object p, 𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡𝑘(𝑝, 𝑜) variable is reachability distance of an 

object p with object o, and  𝑁𝑘−𝑑𝑖𝑠𝑡(𝑝) variable a number of neighbors p whose distance from p is not greater than k-distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig.1. Local Outlier Factor Algorithm Flow Chart 

Start 

Calculate all the distance between each 

point using eq. (1) 

Calculate the nearest neighbor algoritm that is 

not more than the k-distance value 𝑁𝑘−𝑑𝑖𝑠𝑡(𝑝) 

Calculate Reachability Distance: 

 𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡𝑘(𝑝, 𝑜) = max{k−𝑑𝑖𝑠𝑡𝑘(o), d(p,o)} 

Calculate local reachability density 𝑙𝑟𝑑(𝑝) using eq. (3) 

Calculate LOF value using eq. (2) 

End 
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Fig.2 illustrates the distance range with k = 4. An object p is far from o, exemplified by 𝑝2, the distance between all is the 

original distance. But, if they are “close enough”, the case within the figure is 𝑝1, the original distance is supplanted by k-

distance o. The statistical fluctuations of d (p,o) for all the p that are near to the variable o can be significantly reduced, that’s 

reason for that. The parameter k can control strength of this smoothing [15]. 

 
Fig.2. 𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡𝑘(𝑝1, 𝑜) and 𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡𝑘(𝑝2, 𝑜), for k=4[15] 

 

Where, k-distance of p is defined as distance d(p,o) between p and an object o is (i) for at least k objects o’∈ D\{p} it holds that 

d(p,o’) ≤ d(p,o), and (ii) for at most k-1 objects o’∈D\{p} it holds that d(p,o’) < d(p,o). In this paper d(p,o) uses Euclidean 

distance,  

𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡𝑘(𝑝, 𝑜) = max{k−𝑑𝑖𝑠𝑡𝑘(o), d(p,o)}, and 𝑁𝑘−𝑑𝑖𝑠𝑡(𝑝) = { q ∈ D\{p} | d(p, q) ≤ k-distance (p) }. 

D. LOF K-Means 

LOF K-Means is the addition of the LOF method to eliminate outliers in the K-Means clustering method. LOF K-Means 

description to determine the centroid of the hotspot data is shown in Fig. 3. Hotspot data is initially grouped by the K-Means 

method. The next step is to detect outliers for each group resulting from clustering with LOF. The object discovered outliers are 

then removed.  Then new centroid for each group is obtained using the K-Means method again. Overall the system for clustering 

of hotspot data using LOF K-Means is shown in Fig.4. 

 

Fig.3. Block Diagram LOF K-Means 

 

 
 

Fig.4. Clustering of Hotspot Data Using LOF K-Means Flow Chart 
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III.   RESULT AND DISCUSSION 

The centroid points of the hotspot data clustering using LOF K-Means results for k=10, and the number of outliers from each 

cluster for k=10 also shown in the table I. 

 
TABLE I  

RESULT CLUSTERING LOF K-MEANS FOR K=10 

cluster Non-outlier data outlier 
centroid 

latitude longitude 

1 606 64 -2.5611384488448845 113.65633316831672 

2 660 72 27.045356969696964 117.40351893939406 

3 1534 262 17.181713298565818 98.3366102998696 

4 465 108 -2.1122307526881743 124.12955397849468 

5 559 69 22.913002862254043 109.12928658318428 

6 378 57 24.61175899470897 91.93573994708998 

7 773 91 25.351789521345424 102.02087490297528 

8 188 21 3.6933164893617008 103.64177340425532 

9 1615 343 -8.696792012383908 142.20345164086683 

10 981 132 13.719616615698254 105.46438277268103 

  

The results of the Sum of Squared Error (SSE) of both clustering methods (K-Means and LOF K-Means) are shown in Fig.5. 

Clustering was done by varying the number of clusters (k = 10, 15, 20, 25, 30, 35, 40, 45 and 50). From Figure 3, both methods 

have the same pattern. The optimal cluster in both methods is shown in the same cluster, cluster k = 20. This is shown from the 

biggest decrease in SSE value in cluster 20.  

 
Fig.5. Sum Square Error for clustering methods K-means and LOF K-Means 

 

The SSE value of LOF K-Means for each number of clusters is lower than the SSE value of K-Means in Fig.5. This shows the 

LOF K-Means method is better than the K-Means method. The average SSE value of LOF K-Means is 33285,56, while the 

average SSE value of K-Means is 37469,22. The best SSE value of LOF K-Means is 25147 at k = 40. 

IV. CONCLUSION   

This paper presented the clustering method for clustering hotspot data. Clustering was done by varying the number of cluster k = 

10, 15, 20, 25, 30, 35, 40, 45 and 50. Clustering method:  K-Means and LOF K-Means were evaluated for their SSE values. The 

evaluation results have shown that LOF K-Means was better than K-Means. Further studies are needed to be related to the outlier 

removal method other than LOF to be combined with the K-Means method, to obtain a better clustering method. 
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