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ABSTRACT 

 

The automobile business is introducing a lot of autonomous vehicles in the modern day. Lane changes are one of the most complicated urban scenarios in 

which autonomous vehicles are used. Self-driving automobiles must thus interact with human-driven vehicles in a certain way. In this work, we concentrate 

on the autonomous vehicle's lane-changing control system for obstacle avoidance. This study employs a predictive control system as its methodology. The 

vehicle's next movements can be predicted by this control system. The vehicle's position, which is adjusted by the steering angle, is the controllable variable.  
The vehicle's position, which is adjusted by the steering angle, is the controllable variable. It is clear from the numerical simulation results that the predictive 

control system executes control actions on lane changes correctly, avoiding collisions with the running vehicle obstacles. RMSE (Root-Mean Square Error) 

is a performance metric that is derived from the difference between the vehicle's lateral position and the reference trajectory value. The RMSE of the planned 

predictive control is 0.9681. 
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I. INTRODUCTION 

The development of the world's automotive industry is currently competing to assemble land vehicles that are comfortable and 

certainly safe. Technology and artificial intelligence have advanced quite quickly in recent years. The development of autonomous 

vehicles is one engineering outcome in the realm of transportation technology. An autonomous system is one that can run on its 

own [1]. 

Vehicles that have autonomous systems are ones that can run without the need for human intervention. The primary goal of 

research on autonomous vehicles is to enhance the driving safety system. According to the data obtained, about 94% of traffic 

accidents are caused by human error [2]. IRTAD (International Road Traffic and Accident Database) announced that in 2019, more 

than 1.3 million people died, and 10 million people were injured in traffic accidents. Pedestrians were the main victims of about 

50% of the total incidents [3]. Driverless four-wheeled vehicle technology, also known as autonomous vehicles, will help reduce 

traffic accident rates [4]. 

In previous research on designing lane change systems in autonomous vehicles, many research methods have been used to design 

an autonomous vehicle trajectory. However, some methods still require a lot of research and testing data, and their implementation 

is complicated and expensive. Cell decomposition algorithms such as Repidly-explore Random Tree (RRT) are one of the methods 

used for collision-free path planning, but they incur huge computational and memory costs. Other research uses a trajectory 

planning approach based on discrete optimization for autonomous vehicles. This approach can select an optimal path from a set of 

candidate trajectories. This method uses the global route from the digital map obtained before performing local trajectory planning. 

The centerline or so-called frenet reference path representing the global route is constructed using a cubic spline to generate 

candidate paths, the frenet coordinate system (s - ρ) is used, and the directional information for the global route is combined with 

vehicle maneuvers by adjusting the lateral offset to the centerline. A cost function is designed and used to select the optimal path 

from multiple candidate paths. The results show that the control system with a rapidly-explored random tree (RRT) is less good at 

generating path extension and smoother control system results [11]. 

The previous research conducted experiments using perception systems, rate design systems, and control systems that can 

produce better and more efficient values—starting from the perception system. The perception system in autonomous vehicles is 

how the vehicle can observe its surroundings. This system uses many sensors to get accurate results. This process includes 

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


International Journal of Artificial Intelligence & Robotics (IJAIR)                                                                E - ISSN : 2686-6269 

Vol.6, No.1, 2024, pp.8-18    
9 

 

DOI: http://dx.doi.org/10.25139/ijair.v6i1.8141 

detection. This process includes detection, understanding, and interpretation of the environment around the vehicle, both static and 

dynamic things [5]. In addition, this perception system must also be able to review ego vehicles against other vehicles to produce 

simulation results in the form of designed ego vehicle movements. Ego vehicle is a name for the designed vehicle. In this research, 

the perception system that will be generated only displays the simulated form of the ego vehicle against the lane design. These 

results produce the form of ego vehicle position, lane design form, and maneuvering simulation. 

 Path planning is designing a path from a starting position to a destination position in an environment that has static or dynamic 

obstacles, passing through predefined waypoints [7]. Path planning algorithms that allow vehicles to find the shortest path or 

optimal path between two points. The optimal path can be a path that minimizes the number of turns, the number of violations, the 

number of collisions, or whatever is needed in the program. Path planning is classified into two types: global path planning and 

local path planning [8]. The path planning algorithm in this study uses a discrete algorithm, namely A*. 

Control systems in autonomous vehicles can perform path-switching actions using control systems, one of which is a predictive 

control system. This research uses a predictive control system as one of the good trajectory planning methods while producing 

good optimal values in control [12] because of its flexibility and ability to calculate the optimal value solution in the presence of 

better hard and soft constraints [9]. The advantage of using predictive control methods is that they can predict the future dynamics 

of a system and optimize the prediction horizon associated with current information [10], from existing research in trajectory 

planning. 

 

Fig.1. Manoeuvre Phase 

Fig.1 is an illustration of an overtaking vehicle. When the red vehicle with the yellow window detects the lane and obstacles in 

front of it, the vehicle starts performing lane change actions to the right lane, and trajectory tracking continues in the right lane 

until the autonomous vehicle passes the red vehicle with the blue window. Then, a second lane change occurs to push the 

autonomous vehicle back into the left lane. During the overtaking maneuver, the autonomous vehicle must pass the red vehicle 

with blue windows at a sufficient distance to avoid collision with the purple-windowed vehicle [5]. They are creating a lane change 

system using the predictive control system. As explained in the paragraph above, this research uses a predictive control system as 

a lane design system while producing good control system results, utilizing a perception system in the form of the occupancy grid 

method results in the position of the vehicle with the environment around the ego vehicle. These results are processed to determine 

the optimal value in producing an efficient and good control system using a predictive control system. So, this research aims to 

produce the optimal value of the predictive control system in the lane change design system in autonomous vehicles. 

II. METHOD 

A. Vehicle Modeling 

A ground vehicle that is often used in conducting autonomous research is a car. Cars have two front wheels for turning and 

two fixed rear wheels. This model can also be called the Ackermann model [11]. The canter of rotation of the car chassis lies on 

the line through the rear wheels at the intersection with the line perpendicular to the front wheels in Fig.2.  

 
Fig.2. Vehicle Using Ackermann Model 
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Fig. 2 is an image of the ego vehicle model designed for this study. The rotation canter of the car chassis lies on the line through 

the rear wheels at the intersection with the line perpendicular to the front wheels in Fig. 2. The kinematic model of the Ackermann 

vehicle by ignoring the turning angle of four wheels is as in Equation (1) [11]. 

𝑞̇ =

[
 
 
 
𝜙̇
𝑥̇
𝑦̇

𝜓̇]
 
 
 
= [

(𝑡𝑎𝑛 𝜓)/𝑙
cos𝜙
sin𝜙

0

0
0
0
1

] [
𝑣
𝑤

] 

     (1) 

𝑥̇ = 𝑣 cos 𝜙̇      (2) 
𝑦̇ = 𝑣 sin 𝜙̇      (3) 

𝜙̇ =
𝑣

𝑙
tan𝜓      (4) 

𝜓̇ = 𝑤      (5) 
 

Equations 1 to 5 are vehicle modeling used in this study. Equation (1) is from the value of the model used, namely the Ackermann 

model. The Equations (2) until (5) are the position of the vehicle against the front and rear wheels to the steering angle. Where, the 

𝑞̇ variable is Ackermann vehicle modeling, the 𝜙̇ variable is rolling angle, the 𝑥̇ variable is midpoint 𝑥 on the rear wheel, the 

𝑦̇ variable is midpoint 𝑦 on the rear wheel, the 𝜓̇ variable is steering angle, the 𝑙 variable is vehicle length from the center point of 

the front wheels to the center point of the rear wheels, the 𝑣 variable is the velocity (𝑘𝑚/ℎ), and the 𝑤 variable is turnover (𝑟𝑝𝑚). 

Table I is a parameter of vehicle modeling, a table that contains the information and values used in this study.  

 
TABLE I 

ACKERMANN PARAMETERS VEHICLE 

Symbol PARAMETERS Value  

𝜙 

𝑥 

The angular position of the vehicle  

Position of the vehicle with respect to the axis 𝑥 (𝑚) 

0.1 

0.5 

𝑦 

𝜓 

𝑙 
𝑣 

𝑤 

Position of the vehicle with respect to the axis 𝑦 (𝑚) 

Vehicle steering angle position (𝑟𝑎𝑑) 

Distance between front and rear wheel axis (𝑚) 

velocity (𝑚/𝑠) 

turnover (𝑟𝑎𝑑/𝑠) 

0.3 

0.5 
0.2 

10 

3 

B. Environment 

At this point, the scenario driving designer is used to develop a road condition scenario scheme by adding parameters for the 

road's length and width, the path's geometry, and the amount of obstacles—such as vehicle objects—as needed. A lane design 

parameter table is shown in Table II.  

TABLE II 

PARAMETERS ENVIRONMENT 

PARAMETERS Value 

Shape of the world 

Long 
Width 

Turn 

Ego vehicle 
obstacles 

Straight turn 

200 meters 
7 Meters 

60o and 130o angle 

1 vehicle 
4 vehicles, constant dynamics 

 

The parameters consist of the environmental model dimensions of the lane design. In this study, the road is designed to turn. The 

road conditions used in Fig.3 are a design drawing for the design of the lanes used. The image is from the overall lane model, 

which is in the form of straight turns, blue ego vehicles, and other obstacles. 
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Fig.3. Schematic of the Environment 

C. Path Planner 

Path Planner is one of the most fundamental problems. Path planning allows the vehicle to find the optimal path between two 

points. Path planning can be categorized into two, namely, global path planning and local path planning [8]. Fig.4 is a block 

diagram design of path planning consisting of 3 blocks. Namely, the occupancy grid block is used as the perception system. Then, 

the A* block is a path planner and the reference signal block, which is useful for converting the signal generated from A* into a 

signal that the predictive control system can input. 

 
Fig.4. Path Planning Block Diagram 

 

 The A* algorithm is one of the global planning methods that uses a discrete search method to find the destination node by 

utilizing a graph model. The graph consists of nodes, which can be formed by cells of the underlying grid map. Equation (6) is 

used by the A* algorithm to calculate the best path through the network by taking into account the cost that is determined by the 

connections between the nodes. The A* algorithm uses two heuristic values, h(n), which are Manhattan distance using Equation 

(8) and Euclidean distance using Equation (7). [5]. Where the 𝐹(𝑛) variable is the cost required to move, the  𝑔(𝑛) variable is the 

cost movement from the starting point to the current node, the ℎ(𝑛) variable is the cost of the movement path from the current 

node to the destination node, the 𝑥𝑛 variable is point 𝑥 at the current node, the 𝑥𝑔𝑜𝑎𝑙  variable is point 𝑥 at the destination node, the 

𝑦𝑛 variable is point 𝑦 at the current node and the 𝑦𝑔𝑜𝑎𝑙  variable is point 𝑦 at a destination node. 

𝐹(𝑛) = 𝑔(𝑛) + ℎ(𝑛)    (6)  
ℎ(𝑛) = |𝑥𝑛 − 𝑥𝑔𝑜𝑎𝑙| + |𝑦𝑛 − 𝑦𝑔𝑜𝑎𝑙|    (7) 

ℎ(𝑛) = √(𝑥𝑛 − 𝑥𝑔𝑜𝑎𝑙)
2 + (𝑦𝑛 − 𝑦𝑔𝑜𝑎𝑙)

2    (8) 

D. Object Detection 

Object detection is the process of recognizing an object. This object detection indicates that the object is clearly visible in the 

frame, and its position is also clearly determined. Object detection can be said to be a way to find and determine the position of 

objects in a frame [6]. LiDAR consists of a distance scan that continuously rotates clockwise through a motor attached using a 

coir. It provides distance scanning data up to an 8-meter radius and transmits the obtained data through a communication interface 

[5]. LiDAR uses modulated infrared signals, after which the returned signals are detected and sampled by a visual acquisition 

module. Through the digital signal processing module, the sampled data is processed to produce distance and angle information 

between the object and the LiDAR [5]. The capability to function in space, a full field of view that encompasses 360 degrees, a 

compact size, a reasonably lightweight form factor, and a very low power consumption. The parameters of the sensor that was 

utilized, specifically the camera, are listed in Table III. It is composed of values, parameters, and units of measurement. When it 

comes to the construction of detecting objects that are utilized by ego vehicles, this table contains the parameter values that are 

utilized. It will assist in the detection of ego vehicles and the environment around them. 
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TABLE III 

CAMERA SENSOR SPECIFICATIONS IN AUTONOMOUS VEHICLES 

PARAMETERS UNITS Value 

Maximum Range 

Detection Probability 

Meters 

- 

150 

1 

Accuracy Bounding Box 
Focal Length 

Maximum Occlusions 

Pixels 
Pixel 

Fraction 

1 
[800, 800] 

0.5 

 

Fig.5 shows the placement of the camera sensor and the designed Lidar. The camera sensor is located on the front roof of the 

vehicle. In comparison, the Lidar is placed in the center of the vehicle's roof. This placement is usually adjusted to the general 

placement of sensors. This placement is placed in that section in order to facilitate the detection of obstacles around the ego vehicle. 

In Fig.6 are the parameters of the camera sensor used in the vehicle design that can help the maker reset the parameters according 

to what is needed. Fig.7 shows the parameters of the Lidar sensor used in the vehicle design, which can help the maker to reset the 

parameters according to what is needed. 

 

 

 
Fig.5. Camera Sensors And Lidar Installed on An Autonomous Vehicle in The Scenario. 

 

 
Fig.6. Properties and Configuration of Edged Camera 

 
Fig.7. Properties and Configuration of Edged LiDAR 



International Journal of Artificial Intelligence & Robotics (IJAIR)                                                                E - ISSN : 2686-6269 

Vol.6, No.1, 2024, pp.8-18    
13 

 

DOI: http://dx.doi.org/10.25139/ijair.v6i1.8141 

E. Occupancy Grid Generator 

This system's occupancy grid block consists of two blocks: occupancy visualisation and occupancy grid generate. It is necessary 

to have data on actors (obstacles), ego vehicles, and lanes in order to feed the occupancy process. After that, the occupancy grid 

was generated. Sensor data and information gathered from the vehicle's surroundings are utilized to create occupancy grids. A two-

dimensional depiction of an ambient space separated into tiny cells is called an occupancy grid. The occupancy grid shows the 

percentage of a given site that is either occupied or vacant. In order to identify objects and determine their presence or distance, 

this method entails gathering data from sensors like Lidar, radar, or cameras. After processing the sensor data, a grid reflecting the 

neighborhood's condition is created. Grids based on sensor data can be generated in this process using mapping methods like the 

grid-based occupancy mapping approach or the A* algorithm [6] 

Moreover, data is processed to create a grid, lane canter, and egoPose (the autonomous vehicle position state) when the 

occupancy grid, which represents data in two dimensions, is formed. Occupancy grid visualization is required in order to show or 

visualize the data's outcomes. The occupancy grid visualization technique is used to show the occupancy grid visualization once it 

has been generated. Users may view and comprehend the state of the environment in graphical form due to this representation. 

The occupancy grid is shown in this visualization as a two-dimensional grid view, with each cell having a distinct color or intensity. 

Whereas empty cells show spaces devoid of items, filled cells show things or barriers that have been discovered. A graphical 

display that is directly simulated and generates output that is delivered to an external display environment can be this type of 

visualization. 

 
Fig. 8. Dynamic Map Generating Flowchart [6] 

 

Generate a discrete grid that contains information about the environment and cars around the ego vehicle. Before designing a 

path with the A* algorithmthe output produced by the A* Algorithm, which includes the grid, must be adjusted as a consequence 

of establishing a scenario path that has been created in the numerical driving scenario designer program. The binary occupancy 

grid function will be used to build the grid [6]. An illustration of the occupancy grid maker's flow is shown in Fig. 8. Researchers 

can adjust the occupancy grid as needed with the use of this flowchart. A reference path variable from the A* algorithm path design 

enters the predictive control signal as a result of the created grid, and this variable is then used to turn the generated reference 

signal into a control signal.  

F. Predictive Control System 

Predictive control systems originated in the late 1970s and have come a long way since then, both in research and industry. The 

term predictive control is used to obtain a control signal by minimizing a cost function with constraints. The underlying ideas in 

each type of predictive control are [5]. 

1) Use of process models to predict process output at a future time (horizon).  

2) Calculation of the control sequence minimizes the cost function with constraints.  
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3) In the preceding strategy, at each sampling time (at time k), the horizon is moved to the next sampling time (at time k+1) 

by involving the use of the first control signal (u(k)) to control the process and the above steps are repeated using the 

latest information. 

Predictive Control System is a control strategy based on solving an open-loop horizon optimal control problem. The controller 

is based on a discrete-time model of the system that is used to predict the system response to control inputs along a number of 

discrete time steps, the prediction horizon. The predicted system response will be compared with the reference and tracking error. 

Control inputs are sorted using a performance cost function. The future behavior of the controlled system is optimized by selecting 

the best acceptable control input and minimizing the cost function with constraints. Predictive control uses the Receding Horizon 

Principal control scheme [6]. 

Model Predictive Control (MPC) is a discrete-time control technique whose main goal is to map out a trajectory of future control 

inputs or manipulated variables in order to maximize plant output performance in the future within a constrained time frame. At 

the beginning of the time window, the plant information must be supplied. The state-space model of the plant serves as the 

foundation for the design of Model Predictive Control systems [5]. The plant outputs at future instants (prediction horizon) of time 

are explicitly predicted using the state-space model. After resolving optimization issues with quadratic programming (QP) and 

minimizing an objective function, MPC determines a series of control inputs. Additionally, MPC employs a receding horizon 

technique in which the plant receives the first control signal of the sequence determined at each time step, with the horizon being 

shifted toward the future at each instant.. Preventing violations of input and output constraints, maximizing some output variables 

while maintaining others within predetermined ranges, and regulating a significant number of system variables in the case that a 

sensor or actuator is unavailable are some of the key goals of an MPC controller. The Model Predictive Controller process consists 

of three essential steps: feedback correction, optimization, and prediction model. 

 

Fig.9. Structure Of How Predictive Control System Works  

 A basic structure is used to implement predictive control, as shown in Fig.9 [13]. A model is used to predict future outputs based 

on past and current values and proposed future optimal actions. The optimizer calculates this action by considering a cost function 

with constraints. The predictive control system uses a mathematical modeling system using Equations (1) to (5) as an Ego Vehicle 

model. The predictive control system, especially the optimizer process, can be done by minimizing the cost function, as shown in 

Equations (9) to (11) with constraints [5]. Where, the 𝐽(𝑘) variable is the cost function, the 𝑁 variable is horizon prediction, the 𝑄 

variable is the state weight matrix, the 𝑅 variable is the control weight matrix, the 𝑢 variable is input control, the 𝑥 variable is 

vehicle position, and the 𝑎(𝑚|𝑛) variable states the value of 𝑎 at the moment 𝑚 that was predicted at the time 𝑛. 

min
𝑢

𝐽(𝑘)   (9) 

𝐽(𝑘) = ∑𝑥̃𝑇(𝑘 + 𝑗|𝑘)𝑄𝑥̃(𝑘 + 𝑗|𝑘) + 𝑢̃𝑇(𝑘 + 𝑗 − 1|𝑘)𝑅𝑢̃(𝑘 + 𝑗 − 1|𝑘)

𝑁

𝑗=1

 
  (10) 

𝐽(𝑘) = 𝑥̅𝑇(𝑘 + 1)𝑄𝑥̅(𝑘 + 1) + 𝑢̅𝑇(𝑘)𝑅𝑢̅(𝑘)   (11) 

constraints, 

 
𝑥̃(𝑘)         = 𝑥(𝑘) − 𝑥𝑟(𝑘)  

𝑢̃(𝑘)         = 𝑢(𝑘) − 𝑢𝑟(𝑘)  

 

𝑥̅(𝑘 + 1) = [

𝑥̃(𝑘 + 1|𝑘)

𝑥̃(𝑘 + 2|𝑘)
⋮

𝑥̃(𝑘 + 𝑁|𝑘)

]     ; 𝑢̅(𝑘) = [

𝑢̃(𝑘|𝑘)

𝑥̃(𝑘 + 1|𝑘)
⋮

𝑥̃(𝑘 + 𝑁 − 1|𝑘)

]      ; 𝑄 = [

𝑄
0
⋮
0

  

0
𝑄
⋮
0

  

⋯
⋯
⋱
⋯

  

0
0
⋮
𝑄

]     ; 𝑅 = [

𝑅
0
⋮
0

  

0
𝑅
⋮
0

  

⋯
⋯
⋱
⋯

  

0
0
⋮
𝑅

] 

𝑥̅(𝑘 + 1) = 𝐴(𝑘)𝑥̃(𝑘|𝑘) + 𝐵(𝑘)𝑢̃(𝑘)  
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G. Root Mean Square Error Method 

The Root Mean Square Error (RMSE) method is an important error measure for use in statistics and machine learning. RMSE 

is calculated by taking the square root of the mean square of the difference between the predicted value and the true value. A low 

RMSE value indicates that a model can accurately predict the true value, as shown in Equation (12) [5]. Where the 𝑛 variable is 

the amount of data, the 𝑦𝑖 variable is the actual value, and the 𝑦̂𝑖 variable is the reference value. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑛

𝑖=1

   (12) 

III. RESULT AND DISCUSSION 

A. Path Planner 

The binary occupancy grid map is helpful for collision avoidance and freeway path optimization in path planning algorithms. 

The occupancy map uses a binary value of zero or one to indicate the occupancy state. One (1) or "true" denotes an occupied site, 

whereas zero (0) or "false" denotes a free location. The world coordinate and ego perspective—the outcomes of the occupancy 

grid—are displayed in Fig. 10. When expressing an object's or point's location in three-dimensional space (x, y, and z) using a 

fixed or absolute reference, the term "coordinate" refers to a coordinate system. The car is shown in Fig. 10 (a) at coordinates (258, 

5.5). It was driven to avoid the car in front of it and came to a stop at coordinates (351, 2). The self-driving car travels for ten 

seconds. In contrast, the ego perspective in Figure 10 (b) refers to the viewpoint or point of view from the autonomous vehicle's 

or the subject's point of view. The ego viewpoint, which is typically the reference point when sensing or focussing, characterizes 

the perspective or point of view of the primary object or subject being observed. 

 
(a) World Coordinate 

 
     (b) Ego Perspective 

Fig. 10. The Results Of The Occupancy Grid  

 

Table IV above is a table of vehicle position results generated based on world coordinates.. This table, which presents the overall 

simulation results of the trajectory created by the autonomous vehicle using the A* algorithm, yields the results of the F-value 

(cost necessary to move). The car is thought to be traveling at a steady 15 m/s. Every one second, the table displays the autonomous 

vehicle's lateral position data. This indicates that the average distance traveled with the A* trajectory outcome for 10 seconds is 

139 meters, and the average estimated cost for the entire run is 2475. 

 
TABLE IV 

VEHICLE POSITION RESULTS 

TIME(S) 
X0 (INITIAL X 

VEHICLE POINT) 

XF (VEHICLE 

POINT X END) 

Y0 (VEHICLE 

POINT Y 

INITIAL) 

YF (VEHICLE 

POINT Y END) 
F(N) 

0 
1 

2 

3 
4 

5 

6 
7 

8 

9 

204 
206 

216 

236 
251 

269 

284 
305 

313 

327 

206 
216 

236 

251 
269 

284 

305 
313 

327 

343 

2 
4 

5 

5.5 
5.5 

5.5 

5.5 
5.5 

4 

3 

2 
4 

5 

5.5 
5.5 

5.5 

5.5 
5.5 

4 

3 

236 
228 

218 

223 
220 

223 

218 
231 

225 

223 
10 343 352 2 2 230 
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B. Predictive Control System Results  

The horizon open-loop optimum control issue is the foundation of the predictive control system, a control approach. The 

predictive control is implemented using the same general framework as in Fig. 11. 

 

Fig.11. Basic of Structure Predictive Control System 

Based on historical, present, and suggested future ideal activities, a model value is used to forecast future outputs. The cost function 

with constraints is taken into account by the optimizer while calculating this action. Figure 11 [5] is the basic structure of how the 

predictive control system works. In the predictive control system, an optimization event occurs to produce a good value. The results 

of this optimization produce a more optimal value. The predictive control system uses a dynamic modeling system specifically 

using the state space as in Equation (13) and (14). Where, the 𝑋𝑘+1 variable is state variable -𝑘 + 1, the 𝐴𝑘 variable is the state 

matrix, the 𝑋𝑘 variable is state variable -𝑘, the 𝐵𝑘 variable is input matrix, the 𝑈𝑘 variable is input, the 𝑌𝑘 variable is output, and the 

𝐶𝑘 variable is the output matrix.  

𝑋𝑘+1 = 𝐴𝑘𝑋𝑘 + 𝐵𝑘𝑈𝑘      (13) 
𝑌𝑘 = 𝐶𝑘𝑋𝑘      (14) 

The predictive control system, especially the process optimizer, can be done by minimizing the cost function as in Equation 

(15) and (16) with constraints [13]. Where, the 𝑈 ≙ {∆𝑢𝑘 , … . , ∆𝑢𝑘+𝑁𝑢−1
} variable is predictive horizon of inputs to-𝑘 until to-𝑁𝑢, the 𝐽 

variable is cost function, the 𝑈 variable is input control, the 𝑥(𝑘) variable is state variable now -𝑘, the 𝑁𝑦 variable is predictive 

horizon input, the 𝑁𝑢 variable is predictive horizon output, the 𝑦𝑘+𝑖|𝑘 variable is output at time -𝑘, the 𝑟𝑘+𝑖|𝑘 variable is tracking 

trajectory setpoint, the 𝑄 variable is output weight, the ∆𝑢′
𝑘+𝑖|𝑘variable is input weight, the 𝑅 variable is input weight, and the ∆𝑢𝑘+𝑖|𝑘 

is predictive input. 

 
min

𝑈≙{∆𝑢𝑘,….,∆𝑢𝑘+𝑁𝑢−1}
{𝐽(𝑈, 𝑥(𝑘))} (15) 

= ∑ [(𝑦𝑘+𝑖|𝑘 − 𝑟𝑘+𝑖|𝑘)
′
𝑄(𝑦𝑘+𝑖|𝑘 − 𝑟𝑘+𝑖|𝑘) + ∆𝑢′

𝑘+𝑖|𝑘𝑅∆𝑢𝑘+𝑖|𝑘] 

𝑁𝑦−1

𝑖=0

 
(16) 

 

constraints, 
𝑁𝑢 = 𝑁𝑦  

𝑢𝑘 ∈ 𝑈 𝑑𝑎𝑛 𝑢𝑘+𝑖 ∈ [𝑢𝑚𝑎𝑥𝑚𝑖𝑛],  ∆𝑢𝑘+𝑖 ∈ [𝑢𝑚𝑎𝑥𝑚𝑖𝑛],  𝑢𝑛𝑡𝑢𝑘 𝑖 = 0,1,… , 𝑁𝑢 − 1  

𝑦𝑘 ∈ 𝑌 𝑑𝑎𝑛 𝑦𝑘+𝑖 ∈ [𝑦𝑚𝑎𝑥𝑚𝑖𝑛],  𝑢𝑛𝑡𝑢𝑘 𝑖 = 0,1, … , 𝑁𝑦 − 1  

∆𝑢𝑘 = 𝑢𝑘 − 𝑢𝑘−1 ∈ ∆𝑈 𝑑𝑎𝑛∆𝑢𝑘+𝑖 = 0,  𝑢𝑛𝑡𝑢𝑘 𝑖 ≥ 𝑁𝑢  

𝑥𝑘|𝑘 = 𝑥(𝑘), 𝑥𝑘+𝑖+1|𝑘 = 𝐴(𝑘)𝑥𝑘+𝑖|𝑘 + 𝐵(𝑘)𝑢𝑘+𝑖|𝑘 = 𝑢𝑘+𝑖−1|𝑘 + ∆𝑢𝑘+𝑖|𝑘 , 𝑦𝑘+𝑖|𝑘 = 𝐶(𝑘)𝑥𝑘+𝑖|𝑘  

 

Table VI shows the parameters used for predictive control values. These parameters adjust to the needs to produce good values. 

Then, from these parameters] the results of the predictive control system in the form of predictive control entry signals in the form 

of reference trajectory signals are displayed in the graph in Fig.12, an image of the simulation results in the form of a trajectory 

reference graph. This graph is the result of the trajectory based on the design made.  

TABLE VI 

PARAMETERS PREDICTIVE CONTROL 

PARAMETERS VALUE DESCRIPTION 

N 

Q 

30 

5 

Horizon 

Output Weight 
R 1 Input Weight 
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Fig. 12. Trajectory Reference Graph 

A vehicle motion graph is produced by the predictive control system processing the data derived from the vehicle's lateral 

position. A lateral graph of the vehicle position represents the simulation findings in Fig. 13. The vehicle position produced by this 

system is displayed on this graph. This graph facilitates the process of graphically representing the vehicle's position. When the 

lead vehicle's relative distance from the ego vehicle exceeds the safe distance, MPC tracks the directed ego vehicle velocity. The 

MPC regulates the headway when the relative distance is too near to the safe distance. The ego car does an obstacle avoidance 

maneuver and MPC tracks the intended lateral position when it detects an obstruction and wishes to pass the lead vehicle. 

 

Fig.13. Lateral Position of The Vehicle 

The steering angle depicted in Figure 14 represents the predictive control that is produced as a result. within the graph of steering 

angle. Autonomous vehicles executing lane change actions (maneuvers) demonstrate an increase in amplitude at the 0th and 7th 

seconds due to the steering angle acting as an actuator in response to the control signal produced by the predictive control system. 

 

 
Fig.14. Steering Angle Graph 

 

A graph showing the outcomes of comparing the vehicle's lateral position value with the trajectory reference is shown in Figure 

15. The lateral value of the vehicle location and the actual value can be compared by looking at the graph. The graph above's 

results, as seen in the image above, demonstrate how the error value between the vehicle's lateral position and the reference 

trajectory value is calculated. The lateral vehicle position error, as determined by the Root-Mean Square Error (RMSE) 

computation, is 0.9681 relative to the reference trajectory value. 
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Fig.15. Comparison graph of lateral value of vehicle position with trajectory reference 

IV. CONCLUSION 

Based on the description that has been explained in the previous chapter, the conclusion that is then obtained in this determination 

is that the predictive control system is proven to be successful in carrying out its control action on lane changes. It is proven 

successful because it can produce optimal values in the lane change system. The resulting graph is in the form of a steering angle 

graph and a lateral graph of the vehicle position. Comparing the value of the trajectory reference results with the lateral position 

results is done by calculating the error value between the lateral position of the vehicle and the reference trajectory value. This 

method is numerically simulated using RMSE (Root-Mean Square Error) calculation so that an error of 0.9681 is obtained for the 

lateral position of the vehicle against the reference trajectory value. This error value proves that the control system is optimal. 
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