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ABSTRACT 

 

Predictive maintenance is crucial for ensuring industrial equipment's reliability and operational efficiency. This research aims to develop accurate 

health indicators to monitor real-time equipment conditions based on current signals. The methodology involves several key stages: collection of 

degradation data in current signals, data processing and mining, analysis using Principal Component Analysis (PCA), and development of health 

indicators. This study presents a comprehensive approach to converting raw degradation data into meaningful health indicators for effective engine 

prognostics and health management (PHM). Leveraging current signal data, we apply data mining and processing techniques to extract statistically 

significant features, including Standard Deviation, Peak to Peak, Root Mean Square (RMS), Crest Factor, Impulse Factor, Margin Factor, and 

Kurtosis. PCA is then used to reduce the dimensionality of the processed data, highlighting the principal components that capture the most significant 

variance indicating the machine's health. The resulting health indicators, derived from PCA, show a clear correlation between changes in additional 

load and increasing trends of PCA components and health indicators, thus validating the effectiveness of this approach in monitoring and predicting 

machine conditions. This methodology provides a robust real-time machine health assessment framework, facilitating timely maintenance and 

reducing the risk of unexpected failures.  The results show that increasing resistance over time (t) leads to improved health indicators in a nonlinear 

manner, providing valuable insights for timely intervention before critical failure occurs. This analysis demonstrates a strong correlation between 

daily incremental resistance changes and machine condition as monitored by PCA and health indicators. Consistent upward trends in PCA scores 

and health indicators validate the effectiveness of this technique in tracking engine health under varying resistance conditions. 
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I. INTRODUCTION 

Prognostics and health management (PHM) effectively regulates equipment use and ensures reliability. It is also a computing-

based paradigm encompassing physical knowledge, information, and data [1][2]. Monitoring machine conditions and assessing 

performance degradation involves a crucial step: creating appropriate health indicators (HIs) [3]. Modern industrial systems often 

show HIs degradation over long-term operation. When an HI reaches the failure threshold during operation, the system may cause 

damage to property and harm to individuals [4]. By predicting failures before they occur, maintenance can be scheduled at 

convenient and cost-effective times, reducing downtime and minimizing the risk of unplanned outages.  

Since appropriate HIs appropriately portray a system's health condition, they are essential to a non-end-to-end approach [5][6]. 

If the system experiences large fluctuations, understanding its current health status becomes challenging for individuals. HIs also 

significantly increase the difficulty of predicting the remaining useful life (RUL) with degradation models. Consequently, 

appropriate HI assistance is necessary to comprehend health status and facilitate accurate RUL predictions [7]. The HI research is 

intriguing because it addresses two main issues [8]: determining whether the built HI is helpful for RUL prediction and gleaning 

valuable information from monitoring data that may show a decline. Because of the nature of raw monitoring data, the first issue 

frequently includes complicated systems. Because of the inherent complexities of the underlying physics, intelligent features must 

be used to record health information in complex systems like bearings, machine tools, and turbofan engines. Several statistically 

based feature extraction techniques have been put forth for complex systems, including temporal domain-based techniques. [9], 

frequency-domain-based [10], time-frequency-domain-based [11], and other advanced approaches [12]. 

Regarding the second problem, various criteria, including readability, processability, and monotonicity, have been put forth to 

assess if an HI is appropriate for RUL prediction [13]. HIs are based on statistics and signal processing, offering clear physical 

interpretation and ease of calculation. They are usually derived from machine degradation data's time, frequency, or time-frequency 

domains. As two typical HIs statistics, root mean square (RMS) and Kurtosis have been widely applied for machine condition 
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management (MCM) in the industrial sector. RMS (Root Mean Square) can indicate trends in machine degradation based on energy 

measures, but it is less effective at detecting early signs of errors. On the other hand, Kurtosis, which assesses the transient impulses 

of a corrupted signal, is more sensitive to early mistakes. However, it does not consistently characterize the degradation process of 

the machine [14].  

This research aims to develop health indicators based on current signals using data analysis techniques and Principal Component 

Analysis (PCA). These indicators will enable real-time monitoring of equipment conditions and aid in the early detection of 

damage. This research focuses on collecting and processing degradation data from current signals. The data processing and analysis 

methods employed include data mining and PCA, designed to simplify the data and highlight important features. This article is 

structured as follows: The first section reviews relevant literature. The second section outlines the methodology employed in this 

research. The third section presents the data analysis findings and health indicators' development. Finally, the last section offers 

the conclusions. 

II. METHOD 

As illustrated in Fig. 1, two online steps are proposed: feature extraction and classification. The rest of this section will provide 

a detailed explanation of these steps. The process flow diagram illustrated in Fig.1 outlines a comprehensive approach to 

monitoring and assessing system health using degradation data and flow signals. This method involves several key stages, starting 

with collecting degradation data, which forms the basis for subsequent analysis. Degradation data, particularly current signals, are 

meticulously collected and processed to extract meaningful patterns and trends. After processing the initial data, Principal 

Component Analysis (PCA) is applied. PCA is a statistical method that converts the processed data into a set of orthogonal 

components, which reduces dimensionality while preserving the most significant features. This step is crucial to simplifying the 

data, highlighting key variables contributing to system degradation, and facilitating more effective monitoring. Finally, the filtered 

data is used to develop health indicators. These indicators utilize current signal information to provide a real-time assessment of 

system conditions. By monitoring these health indicators, early signs of damage can be detected, potential failures can be predicted, 

and proactive maintenance strategies can be implemented. An integrated approach that uses current signals and advanced data 

processing techniques such as PCA ensures a robust and accurate health monitoring system, thereby increasing the reliability and 

longevity of monitored equipment. The flow diagram summarizes this methodology, emphasizing a seamless transition from data 

acquisition to health assessment, ultimately improving maintenance and operational efficiency. 

 

 
Fig 1. Flow diagram of Health Indicators (HIs) using Principal Component Analysis (PCA) 

A. Data Set 

The dataset is collected from a three-phase generator. Due to generator coil insulation error, the coil cross-sectional area is 

decreased, leading to an increase in winding resistance. The synchronous machine block models the machine's electrical part using 

a sixth-order state-space model for a synchronous generator. This model considers the dynamics of the stator winding, the field, 

and the damper. The rotor reference frame represents the corresponding circuit, the qd frame, as illustrated in Fig. 2 [15]. The 

stator windings are connected to the internal neutral point in a wye configuration. All rotor parameters and electrical quantities are 

analyzed from the stator's reference and identified by their corresponding variables [15]. 

 
Fig.2. Synchronous Generator Equivalent Model  
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The state vector consists of the and axis on the stator, axis currents on the stator, the damper winding, and the field winding. 

The input vector includes the axis voltages on the stator, damper, and field winding. Meanwhile, the output vector comprises the 

generator output currents on the axes and the excitation current (field current). These relationships are presented in the form of a 

state-space Equation (1) and (2). The components of matrix 𝐴 are explained as Equation (3) and (4). The 𝑅𝑐1 value is presented in 

Equation (5). 

�̇�(𝑡) =  𝐴𝑐(𝜔𝑟(𝑡))𝑥𝑐(𝑡) + 𝐵𝑐𝑢𝑐(𝑡)   (1) 

 

𝑦𝑐(𝑡) =  𝐶𝑐𝑥𝑐(𝑡)   (2) 

 

𝐴𝑐(𝜔𝑟(𝑡)) =  (𝐴𝑐1 + 𝜔𝑟(𝑡)𝐴𝑐2)       (3) 

 

𝐴𝑐1 =  −𝐿−1𝑅𝑐1 = [𝑎1𝑖𝑗
] ; 𝑖, 𝑗 = 1, … ,6  (4) 

 

𝑅𝑐1 =  𝑑𝑖𝑎𝑔 (−𝑟𝑠, −𝑟𝑠 , 𝑟′
𝑘𝑞1, 𝑟′

𝑘𝑞2, … , 𝑟′
𝑘𝑞(𝑛𝑑−1), 𝑟′

𝑓𝑑 , 𝑟′
𝑘𝑑)   (5) 

 

Considering the state-space model (1), the winding resistance will affect the values of Ac1 and Rc1. Therefore, the effect of 

reducing the cross-sectional area of the cable roll on the state matrix is defined by equation (7). The complete modelling is detailed 

as Equation (6) and (7), and the fault vector is defined in Equation (8). 

 

𝐴𝑐𝑓1 =  𝐴𝑐1 + 𝐹𝑐1   (6) 

 

𝐹𝑐1 =  −𝐿−1 𝑑𝑖𝑎𝑔 (−𝑟𝑑𝑖𝑠𝑠
, −𝑟𝑑𝑖𝑠𝑠

, 𝑟′
𝑑𝑖𝑠𝑘𝑞1

, 𝑟′
𝑑𝑖𝑠𝑘𝑞2

, 𝑟′
𝑑𝑖𝑠𝑓𝑑

, 𝑟′
𝑑𝑖𝑠𝑘𝑑

)     (7) 

 

𝑓𝑐1(𝑡) = 𝐹𝑐1𝑥𝑐(𝑡) =  [𝑓1𝑖(𝑡)]; 𝑖 = 1, … ,6  (8) 

B. Features Extraction 

A portion of the recorded signal is needed for this step to compute many characteristics in the frequency, time, and time-

frequency domains. Mechanical vibrations can be effectively analyzed using time and frequency domain analysis techniques [16]. 

Numerous scholarly publications, conference papers, and technical reports have emphasized the significance of investigations 

conducted in the time-frequency domain [17]. Indicators that assess signal impulsivity, such as Kurtosis, peak-to-peak value, and 

peak factor, among others, serve as potential prognostic features for datasets. A clear and detailed description of the feature 

extraction procedure across these domains is provided. 

1) Time-Domain Feature Extraction: Time-domain analysis is a straightforward method that mostly concentrates on computing 

conventional statistical features [16]. This analysis is widely recognized as a powerful tool for characterizing mechanical changes 

associated with faults [18]. This paper suggests capturing timing information from the data using traditional statistical features, as 

Table I illustrates. In this context, x represents the sample time signal, the variable i denotes the sample index, and N indicates the 

total number of samples. 
TABLE I 

SUGGESTED TIME-DOMAIN FEATURES 

Feature Expression 

RMS 

(
1

𝑁
∑ 𝑥𝑖

2
𝑁

𝑖=1
)

1
2

 

Kurtosis 1

𝑁
∑

(𝑥𝑖 − �̅�)4

𝜌4

𝑁

𝑖=1
 

Skewness 1

𝑁
∑

(𝑥𝑖 − �̅�)3

𝜌3

𝑁

𝑖=1
 

Peak to peak (P-P) 𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 

Crest factor 𝑥𝑚𝑎𝑥

𝑅𝑀𝑆
 

Shape factor 𝑅𝑀𝑆

1
𝑁

∑ |𝑥𝑖|𝑁
𝑖=1

 

Impulse factor 𝑥𝑚𝑎𝑥

1
𝑁

∑ |𝑥𝑖|𝑁
𝑖=1

 

Margin factor 𝑥𝑚𝑎𝑥

(
1
𝑁

∑ |𝑥𝑖|𝑁
𝑖=1 )

2 
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Feature Expression 

Mean 
�̅� =

1

𝑁
∑ 𝑥𝑖

𝑁

𝑖=1
 

Standard deviation (Std) 

𝜎 = (
1

𝑁
∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛)

𝑁

𝑖=1
)

1
2
 

Energy 
∑ 𝑥𝑖

2
𝑁

𝑖=1
 

Energy entropy 
− ∑ 𝑥𝑖 log(𝑥𝑖)

𝑁

𝑖=1
 

 

2) Frequency-domain feature extraction: The most widely used technique in the industry for defect diagnosis is frequency domain 

analysis, which is mainly based on spectral analysis research [16]. In vibration analysis, when a rolling element in a bearing 

encounters a local defect on its inner or outer race, it creates an impact that induces high-frequency resonances throughout the 

structure, detectable by response transducers [19]. This method is often employed to observe changes in the frequency spectrum 

of vibrations or acoustic signals. Using frequency-domain feature extraction, important information within a signal, which may 

not be readily apparent in time-domain analysis, can be discerned. This approach provides deeper insights into the characteristics 

and conditions of the signal. 

3) Time-frequency-domain feature extraction: One popular technique in the literature for obtaining features in the time-frequency 

domain is Empirical Mode Decomposition (EMD). It has been widely used to identify issues with rotating machinery [17]. EMD 

breaks down the initial non-stationary vibration signal into stationary signals called intrinsic mode functions (IMFs) [20]. IMFs, 

naturally occurring oscillation modes included in the signal, are extracted using this self-adaptive signal processing technique [17]. 

Implementations of EMD lacking a solid theoretical basis may face issues such as tail effects, filtering stopping criteria, and 

extreme interpolation [21][22]. In this paper, we propose to use time-domain feature extraction methods for several significant 

reasons: 

a) Simplicity and Computational Speed: This method is generally more straightforward and easier to implement than other 

techniques. Calculations for time-domain feature extraction require fewer computational resources and are faster to process, 

making them ideal for real-time applications. 

b) Sensitivity and Anomaly Detection: Time-domain features are adept at quickly reflecting changes in current signals, 

enabling rapid detection of changes in conditions. These features also provide direct indications of any anomalies or failures 

in the signal. 

c) Practicality in Industrial Applications: This method is commonly employed in predictive maintenance systems to 

continuously monitor machine conditions and anticipate maintenance needs before failures occur. It facilitates efficient 

diagnostics without the complexity of spectral analysis, making it suitable for direct application in industrial settings. 

C. Principal Component Analysis 

Principal Component Analysis (PCA) is a widely used technique for handling redundant or correlated data in laboratory and 

process measurements. The relationships between variables and how they alter collectively are frequently where the important 

insights are found. When characterizing process conditions or events, PCA finds correlations between variables that are more 

instructive than using just individual variables [23]. PCA is utilized to detect errors and analyze fluctuations in input and output 

variables within large-scale processes. By decreasing the dimensionality of the dataset, PCA converts correlated variables into a 

smaller set of uncorrelated variables while preserving essential information [24]. This reduction optimizes the capture of data 

variance. PCA effectively utilizes redundant information in highly correlated variables, enabling robust detection and diagnosis of 

process abnormalities after model development using high-quality training data [25]. 

In Equation (9), the PCA decomposes the data matrix X (consisting of m samples and n variables) as the sum of the outer product 

of 𝑡𝑖 and 𝑝𝑖 vectors, along with a residual matrix E  [26]. The vectors 𝑝𝑖 are orthonormal, and the vectors 𝑡𝑖 are orthogonal, as 

shown in Equation (10). We can also observe that 𝑡𝑖  is a linear combination of the original X data, defined by the transformation 

vector 𝑝𝑖, as indicated in Equation (11). 

 

𝑋 = 𝑡1𝑝1
𝑇 + 𝑡2𝑝2

𝑇 + ⋯ + 𝑡𝑘𝑝𝑘
𝑇 + 𝐸 =  𝑇𝑘𝑃𝑘

𝑇 + 𝐸  (9) 

 

𝑝𝑖
𝑇𝑝𝑗 = 1, if 𝑖 = 𝑗 and 𝑝𝑖

𝑇𝑝𝑗 = 0, if 𝑖 ≠ 𝑗; and 𝑡𝑖
𝑇𝑡𝑗 = 0, if 𝑖 ≠ 𝑗   (10) 

 

𝑋𝑝𝑖 = 𝑡𝑖    (11) 

 

The vectors represent the principal component scores. 𝑡𝑖 r, which illustrates the relationships between the samples. The 

eigenvectors of matrix X covariance are the 𝑝𝑖  vectors. They offer information about the connections between variables, which are 

primary component loadings. PCA separates the data matrix X PCA into two parts: residual variance E, which captures the noise 

or unmodeled information, and the system variation, or process 𝑇𝑘𝑃𝑘
𝑇 model. 
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D. Health Indicator 

The choice of thresholds is usually determined by examining historical machine records or leveraging expertise specific to the 

domain. The health indicator's most recent value was chosen as the threshold because this dataset lacks historical data to lessen the 

delay impacts of smoothing operations. Thresholds should ideally be based on smoothed previous data. Given the absence of 

historical data in this dataset, previous slope parameters were arbitrarily selected with high variance (𝐸(𝜃) = 1, 𝑉𝑎𝑟(𝜃) =

106, 𝐸(𝛽) = 1 , 𝑉𝑎𝑟(𝛽) = 106) to primarily rely on observed data. Based on 𝐸[ℎ(0)] = 𝜙 + 𝐸(𝜃), intercept 𝜙 is set to −1 so that 

the model will start from 0 as well. The relationship between the variation of health indicators and noise variation can be derived 

using Equation (12). 

 

∆ℎ(𝑡) ≈ (ℎ(𝑡) − 𝜙)∆𝜖(𝑡)   (12) 

 

In this case, when the noise standard deviation is near the threshold, it is responsible for a 10% change in the health indicator. 

Consequently, the noise's standard deviation can be represented as 
10% ∙𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑡𝑟𝑒𝑠ℎ𝑜𝑙𝑑−𝜙
. 

III. RESULT AND DISCUSSION 

A. Data Collection 

Based on engine degradation data obtained from the Matlab synchronous simulation data set, the engine in Fig.3, rated 200 

MVA, 13.8 kV, 112.5 rpm, is connected to a 230 kV, 10.000 MVA network through a Delta-Wye 210 MVA transformer. The flow 

measurement time step for the complete dataset is 1 day, with simulations conducted daily for 60 seconds. Current data was 

collected over 61 days (2 months). Each day's current data included a resistance. 𝑅𝑐1 added to the simulation, starting at 0.001 on 

day 1 and increasing linearly to 0.06 by day 61. The overall flow data is illustrated in Fig.4. A slight change in flow was observed 

in the initial seconds from day 4 to day 62. 

 

 
Fig.3. Simulation Three-Phase Generator Synchronous Machine 
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Fig.4. Visualization Of Current Signals in The Time Domain 

 

The error severity level in the colour bar in Fig.5 represents the measurement date normalized to a scale of 0 to 1. It is observed 

that the spectral kurtosis value around 2000 Amperes gradually increases as the machine condition deteriorates. Statistical features 

derived from spectral Kurtosis, such as mean and standard deviation, hold promise as potential indicators of bearing degradation. 

 
Fig.5. Fault Severity Indicated 

B. Feature Extraction 

In this research, we investigate the impact of daily changes in 𝑅𝑐1 resistance, incremented by 0.001, on machine performance 

and condition monitoring using Principal Component Analysis (PCA). Each day introduces a new value of 𝑅𝑐1, and we observe 

its effects on various extracted features and health indicators. As described earlier in the feature extraction process with equations 

presented in Table 1, results are plotted in Fig.6, utilizing monotonicity to assess the predictive utility of features. The monotonicity 

of the 𝑖-th feature 𝑥𝑖 is computed using Equation (13). 

 

𝑀𝑜𝑛𝑜𝑡𝑜𝑛𝑖𝑐𝑖𝑡𝑦 (𝑥𝑖) =  
1

𝑚
∑

|𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓 (𝑥𝑖
𝑗

)−𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓 (𝑥𝑖
𝑗

)|

𝑛−1

𝑚
𝑗=1    (13) 

 
Fig.6. Plot Features Extraction 
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In practical scenarios, complete life cycle data may not always be available when developing prognostic algorithms. However, 

it is reasonable to assume that some data has been collected during the early stages of the life cycle. Therefore, the flow data 

gathered over the first 20 days (40% of the life cycle) is designated training data. The importance of these features is ranked and 

aggregated based solely on this training data. Features with an importance value greater than 0.3 are selected. Specifically, seven 

features (Std, Peak to Peak, RMS, Crest factor, Impulse factor, Margin factor, and Kurtosis) meeting this criterion are identified 

from the training data. This process effectively reduces the dimensionality of the dataset, enhancing the efficiency and accuracy of 

the model by focusing solely on the most relevant features. 

C. PCA & Health Indicator 

Principal Component Analysis (PCA) was applied to the extracted features to reduce data dimensionality and identify principal 

components that best explain variance within the dataset. The first principal component (PCA1) consistently increased with daily 

increments in resistance, indicating a clear trend corresponding to changes in resistance conditions. Fig.7 visually depicts the results 

of PCA conducted in this study. The X-axis (PCA 1) represents the primary principal component (PCA1), capturing the most 

significant variance in the dataset. PCA1 is influenced by key features extracted, such as Std, Peak to Peak, RMS, Crest Factor, 

Impulse Factor, Margin Factor, and Kurtosis. The Y-axis (PCA 2) represents the second principal component (PCA2), capturing 

orthogonal variance to PCA1. Each data point is colour-coded to indicate the time of day, progressing from blue (day 1) to yellow 

(day 61). This visualization effectively illustrates the temporal evolution of data points over the study period. 

 
Fig.7. PCA Plotting Simulation Three-Phase Generator Synchronous Machine 

 

In the initial stage (days 1-20), the initial data points (depicted in blue) are clustered near the origin of the PCA space, indicating 

relatively stable machine conditions with low variance in the extracted features. During the transition stage (days 21-40), the colour 

gradient shifts from blue to green, showing noticeable trends in the PCA space. There are evident fluctuations in both PCA1 and 

PCA2 values, suggesting a deteriorating machine condition as resistance levels increase. As the colour transitions from green to 

yellow, representing the decline phase, data points progressively move upwards and to the right in the PCA plot. This phase is 

characterized by a significant rise in PCA1 and PCA2 values, indicating substantial degradation of the machine condition. The 

trend underscores the cumulative impact of resistance changes on engine health. The PCA plot correlates daily resistance variations 

and the evolving machine condition. Increasing values of PCA1 and PCA2, coupled with the colour shift from blue to yellow, 

signify a continuous decline in engine health. 

 
                                                 (a) Data on Daily Changes in 𝑅𝑐1 Plotting                                                                (b) HI Plotting 

Fig.8. Simulation Three-Phase Generator Synchronous Machine HI Curve 



International Journal of Artificial Intelligence & Robotics (IJAIR)                                                                  E - ISSN : 2686-6269 

Vol.6, No.2, 2024, pp.48-56          
55 

 

DOI: http://dx.doi.org/10.25139/ijair.v6i2.8496 

The available data and graphs in Fig.8 clearly illustrate the relationship between daily resistance changes (𝑅𝑐1), Principal 

Component Analysis (PCA) results, and Health Indicators (HIs). Graph (a) demonstrates a linear increase in 𝑅𝑐1 over time, with a 

daily increment of 0.001. This controlled rise in resistance is crucial for analyzing machine behaviour and health over an extended 

period. Graph (b) portrays the trend of HI over time. Initially, HI remains relatively stable at a low level until mid-April. 

Subsequently, it escalates more rapidly, culminating in a sharp increase by the end of May. By day 61, HI exhibits a significant 

rise, indicating a pronounced deterioration in machine health.  

The PCA plot and HI graph indicate an upward trend as the load increases. This affirms that machine condition worsens under 

heavier loads, with PCA and HI metrics effectively capturing this degradation. The rapid surge in HI towards the end of the 

observation period suggests the machine is approaching a critical failure point, consistent with the increasing PCA values. 

IV. CONCLUSION 

As resistance (𝑅𝑐1) increases linearly over time (t) health indicators also increase, albeit nonlinearly, offering valuable insights 

for timely intervention before critical failures occur. This analysis reveals a robust correlation between daily incremental changes 

in resistance and machine condition, as monitored by PCA and health indicators. Consistent upward trends in PCA scores and 

health indicators affirm the effectiveness of these techniques in monitoring engine health amidst varying resistance levels. 

Furthermore, current data can be utilized to derive health indicators, with their relationship often following an exponential function. 

This study underscores the significance of continuous monitoring and applying advanced statistical and signal-processing 

techniques for predicting and preventing machine failures. The visual representation supports the efficacy of employing PCA and 

health indicators in predictive maintenance, facilitating proactive interventions before critical failures emerge. 
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