
 Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.6 No.1 January 2021, P-ISSN : 2502-3470, E-ISSN : 2581-0367

54

DOI : 10.25139/inform.v6i1.3346

Implementation of Multiprocessing and Multithreading for End Node

Middleware Control on Internet of Things Devices
Iwan Kurnianto Wibowo1, Adnan Rachmat Anom Besari2, Muh. Rifqi Rizqullah3

1,2,3Program Studi Teknik Komputer, Politeknik Elektronika Negeri Surabaya, Indonesia
1eone@pens.ac.id*

2anom@pens.ac.id, 3rifqimr@ce.student.pens.ac.id

Abstract— Previously, an educational robot system was built by incorporating Internet of Things (IoT) elements. Over time, this

educational robot has been implanted with a middleware. Middleware has a role in receiving command data from the real-time

database, access sensors, actuators, and sending feedback. Middleware contains protocols that translate commands between high-level

programming and Raspberry Pi hardware. The focus of this research is to improve the performance of the middleware to pursue
processing time efficiency. For this reason, it is necessary to implement multiprocessing and multithreading in handling several tasks.

The CPU division has been adjusted automatically to not work on just one core or block of memory. Several program functions can

run in parallel and reduce program execution time efficiently. The tasks handled are sensor reading and actuator control in the form of

a motor. Testing has been carried out to perform multiprocessing and multithreading tasks to process six sensors and five actuators.

Multiprocessing requires an average of 1.00% to 15.00% CPU usage and 2.70% memory usage. Meanwhile, multithreading involves

an average of 1.00% to 71.00% CPU usage and 3.30% memory usage.

Keywords— Raspberry Pi, Internet of Things, Multiprocessing, Multithreading, Middleware, Educational Robot.

I. INTRODUCTION

Various aspects of human life have been affected by

technological advances that continue to develop so far. The

Internet of Things (IoT)[1] is one of the big technological

advances[1]. The advancement of the IoT field itself enters the

technical or industrial sector, but with the emergence of a

development board with such requirements to become a

learning module, development in the world of education has

also increased. Despite the many historical developments, IoT

developers have only one goal, namely to support human life.

Unfortunately, the rapid development of IoT has not been

matched by adequate learning methods. At present, the

interest in studying the IoT field is very strong, but there is not

much software that provides IoT building learning media. It is

also hard for beginners who want to learn about IoT to learn

the fundamentals of programming comprehension since one of

them is a programming grammar that is very hard to

understand. In developing your own IoT device, you also need

hardware or modules that are not cheap, especially when

doing trial experiments and error is possible.

Generally, the IoT infrastructure is designed with the

Raspberry Pi [2]. Raspberry Pi is an SBC (Single Board

Computer), which in terms of size is practically the size of an

ATM card, has a 40-pin GPIO like a microcontroller, has

computer capabilities, and is relatively affordable.

Middleware can also be built using Raspberry Pi to solve one

of the challenges of the industrial revolution 4.0 for

controlling electronic devices [3]. This study uses Raspberry

as SBC. This is because there is a lot of support from forums

for continuous research, the availability of sensor and actuator

modules in the open market, and many people have used it for

the development of IoT infrastructure.

Applications must pay attention to the needs of the crowd,

especially for a beginner who wants to learn about IoT. They

need help and explanation regarding the learning process of

understanding programming logic in the IoT area. From here

on, the author wants to build a Raspberry Pi that can be

assembled modularly and operated by ordinary people via the

Raspbian OS Interface framework.

This research focuses on designing middleware on

educational robots so that it is hoped later to create a protocol

for accessing sensors and controlling actuators with

commands that have been developed. The software is often

used to coordinate embedded system implementations and so

that the system works well and can also be timely and

effective. In related research [4], middleware is a

programming layer that links high-level programming on the

Raspberry Pi with block programming.

This programming layer is used based on the user method

of interpreting commands with high-level programming,

which are then passed on to the middleware sensors or

actuators. Based on [5], It is also possible to view middleware

as a protocol that translates commands between the Raspberry

Pi and high-level programming. The goal of this development

is to encourage optimum hardware performance. This research

aims to embed the middleware built on the Raspberry Pi in the

form of wiring on the GPIO, which is modular.

II. RESEARCH METHOD

A. Middleware for IoT Devices

Research of [6] provides an Information Flow of Things

(IFoT) middleware architecture, a system for the collection,

interpretation, and mixture of real-time and scalable data

based on the sharing of data processing between IoT devices.

There are several parameters in the basic definition of IFoT.

Each layer of the IFoT middleware has a function:

 Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.6 No.1 January 2021, P-ISSN : 2502-3470, E-ISSN : 2581-0367

55

DOI : 10.25139/inform.v6i1.3346

1. Task Allocation Mechanism: consists of split class and

task assignments class. Recipe split class reads recipes

between applications and divides them into tasks that can be

executed in parallel. Assignments class distributes

assignments divided among IFoT modules.

2. Flow Analysis Function: consists of learning class,

judging classes, managing classes. The learning class analyzes

the time series of sensor data, sequentially ordering, and

building / updating the model. The judging class analyzes the

flow of data using the built model. The managing class

manages cooperative operations for distributed processing.

3. Flow Distribution Function: consists of a publishing

class, broker class, subscribe class. In the IFoT middleware, a

publish/subscribe system is adopted to distribute flows

between IFoT nodes, which aims to realize loosely coupled

flows and scalable messages. The publish class is placed on

the sending side, the subscribe class is placed on the receiving

side in the communication between the IFoT nodes. The

broker class manages the distribution of data according to the

topics defined by the subscription class.

4. Sensor/actuator Integration Function: consists of

sensor class and actuator class. Each class of hardware and

sensor/actuator communication interfaces and provides an

interface for streaming distribution functions.

Figure 1. The logic architecture of the IFoT middleware

Figure 1 presents IFoT's logical architecture. Restricted

functions, namely the flow distribution function and the flow

analysis function, are necessary to implement the IFoT

prototype. The first feature is a Mosquitto-built flow

propagation function, an application that uses the

communication protocol of MQTT. In terms of online

machine learning, the flow analysis feature was developed

using Jubatus, which has more capabilities. A framework

handles any process between many modules. Using

OpenRTM-aist, the program was constructed.

B. Multithreading and Multiprocessing on Python

Based on [7], a thread is the sequential execution of a

program from a machine instruction. A thread can run in

parallel with other threads in a process. A process can contain

multiple threads. Each thread can execute a set of instructions

(a function) independently and run parallel to other processes

or threads. To be an active thread that is different in a process,

the thread will divide the empty memory address, then share

its data structure.

Thread-based parallelism is a standard for making parallel

programming. Note that the python interpreter is not

completely thread-safe [8]. In python, fully able to use

multithreading, it requires a global lock called GIL (Global

Interpreter Lock). The essence of GIL is that it can only

execute a thread from a python program. A GIL is never

enough to avoid the trouble of a program [9]. If multiple

threads try to access the same data in an object, the program

will terminate in an inconsistent state.

Process-based parallelism is parallel programming that

implements the shared memory paradigm. A python program

that implements multiprocessing will use one or more

processors to access the main memory. In python,

multithreading does not require GIL because each process will

run on a different CPU to access the main memory. In contrast

to multithreading, which uses multiple threads.

C. Firebase Real-time Database

Firebase real-time database is a product in the form of a

cloud-hosted database from Google [10]. Firebase uses JSON

to sync data in real-time whenever a client connects. This

study uses the REST API to access the Firebase real-time

database URL as a REST endpoint. Firebase allows users to

access the real-time database directly from the program on the

client and access it securely. The database of the Firebase

real-time database is NoSQL[11]. In Firebase, the real-time

database API is designed only for operations for fast

execution.

D. System Design

The architecture starts from giving the system driver

instructions that include the class of sensor and actuator. The

only way to control sensors and actuators is to give a

command line with any declared parameters so that the

command can read/write the sensor or actuator. Figure 2

shows the types of sensors and actuators that have been

specifically defined in our research middleware system.
There are some key points in applying middleware on the

Raspberry Pi, including the reading of the command notation

sent and the control over the devices to be used. In the

middleware, the processing of incoming data, the translation,

the operation of functions to access sensors and actuators as a

process or thread is performed. Starting from reading the

header and then matching it to the given function code map,

each data obtained will be parsed

 Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.6 No.1 January 2021, P-ISSN : 2502-3470, E-ISSN : 2581-0367

56

DOI : 10.25139/inform.v6i1.3346

Figure 2. Sensors And Actuators That Can Be Accessed On The Raspberry Pi

With Our Middleware Framework

Figure 3. Workflow system

The initial stage in Figure 3 is that the Firebase real-time

database's incoming data will be accommodated in a variable

first. Next, the Firebase real-time database's data will be

parsed with the specified parameters or function code. Each

data that is sent is a set of instructions for access sensors or

actuators with feature and parameter codes. Each data

information structure has the same information structure, but

each sensor and actuator incorporate a distinctive number of

parameters. Figure 4 is the program code notation for each

block.

Figure 4. Program code notation for each block

There are two headers, namely a header for sensors and a

header for an actuator. Then followed by several parameters

which contain the type of sensor, arguments, and feedback.

The ON or OFF state is the next parameter. Where ON is used

to activate a sensor or actuator as a process. Meanwhile, OFF

is used to deactivate sensors or actuators by stopping the

process/thread. There is an additional parameter which,

according to its characteristics, functions to access sensors and

actuators. Headers and parameters are separated using a

comma (","). The temperature sensor access notation

parameters are shown in Figure 5.

Figure 5. Temperature sensor access notation

The distance sensor's notation is to retrieve and display

data in the form of the distance in front of it in centimeters.

The following is a notation for retrieving data from a distance

sensor which is presented in diagrammatic form shown in

Figure 6. The feedback from this notation is the output of the

activated distance sensor reading process/thread.

Figure 6. Distance sensor access notation

The notation on the PIR sensor is to retrieve and display data

in the form of 1/0 logic when there is movement or not around

the sensor. The notation of data collection from the PIR sensor

can be seen in Figure 7.

Figure 7. PIR sensor access notation

The joystick's notation is for retrieving and displaying data in

the form of X and Y coordinate values when the lever is

moved. Figure 8 is a diagram for retrieving data from the

joystick. The feedback from this notation is the X and Y

coordinate of the joystick.

Figure 8. Joystick access notation

 Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.6 No.1 January 2021, P-ISSN : 2502-3470, E-ISSN : 2581-0367

57

DOI : 10.25139/inform.v6i1.3346

Figure 9 is a notation for retrieving data from a potentiometer,

which is presented in diagrammatic form. The potentiometer's

notation is to retrieve and display data in the form of ADC

values 0 to 1024 when the lever is rotated right or left.

Figure 9. Potentiometer access notation

The notation for turning the LED on or off with time

parameters is presented in Figure 10. The parameters provided

are the LED label number and time. Meanwhile, the feedback

that can be read is the output of the activated LED thread or

process.

Figure 10. LED access notation

E. Multiprocessing and multithreading

In an operating system, the multiprocessing approach is a

parallel computation model, where each task performed is

considered a process. [12]. In general, small tasks are always

in a process (big task). Please note that the threads are always

in the same block of memory addresses. Therefore, data

processing uses shared memory in one logical processor. This

is different from middleware that uses multiprocessing.

Instead of being threads, the middleware process that uses

multiprocessing is divided into several sub-processes. This

makes it possible to use another logical processor contained in

the CPU in some of the jobs that are subprocesses. There is a

4-core or logical processor on the Raspberry Pi.

It is expected that from the use of this multiprocessing, the

task contained in the middleware can be immediately divided

into 4 cores. But back to the nature of an operating system,

which has the right to fully control each process or thread

which will run on which core in a CPU. In this study, a

comparison was made between the use of multiprocessing and

multithreading in the middleware that was built.

A declaration is required in the main program to make

every function that runs each sensor and actuator a process.

The declaration on the main program is shown in Figure 11. If

each function that runs each sensor and actuator wants to be a

thread, it must declare the main program to show a function to

be a thread when executed. The declaration on the main

program is shown in Figure 12.

Figure 11. Declaration of the main program to be a process

Figure 12. Declaration of the main program to be a thread

 Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.6 No.1 January 2021, P-ISSN : 2502-3470, E-ISSN : 2581-0367

58

DOI : 10.25139/inform.v6i1.3346

III. RESULTS AND DISCUSSION

Testing is done via a remote connection from the laptop to

the raspberry device. The laptop has core specifications Intel

i3-7100U @ 2.4 GHz x 4, 4GB RAM with OS Win 10 64 bit.

While the raspberry has specifications a Broadcom BCM2837

@ 1.2 GHz x 4 processor, 1 GB RAM, and Raspbian Stretch

2017 OS. The tests that have been carried out include every

command notation sent, the response time between the start of

the command being sent to the middleware being able to

execute a function. The middleware's speed in making a

process, the speed of middleware in creating a thread, and the

comparison of multiprocessing usage with multithreading on

CPU usage and memory usage.

Table I shows the response time between the command

notation sent from Apps until the middleware can respond to

command data. Middleware is capable of executing a process

in seconds. Testing is carried out for each process, and data is

taken from 5x sending orders individually.

TABLE I

TEMPERATURE SENSOR ACCESS TESTING WITH MULTIPROCESSING

Notation
Response

time (s)

Multiprocessing

execution time (s)
Trial

S,1,1

01s:389ms 1,1056 1

01s:102ms 1,1065 2
01s:789ms 1,1049 3

02s:129ms 1,1079 4

01s:827ms 1,1089 5

Table I shows that the response time between commands sent

from Apps to the middleware to respond is between 1 second

to 2 seconds. The test in Table I is carried out at night to get a

good and stable internet speed. While the execution time of a

process starts from initialization to become a process, and

sending 1x data takes > 1 second. The next test is to take the

response time between the command notation sent from Apps

until the middleware can respond to command data and the

middleware's speed in executing a thread in seconds. Tests are

carried out on each thread, and 5x data for sending orders are

taken individually, shown in Table II.

TABLE II

TEMPERATURE SENSOR ACCESS TESTING WITH MULTITHREADING

Notation
Response time

(s)

Multiprocessing

execution time (s)
Trial

S,1,1

01s:829ms 1,1329 1

01s:126ms 1,1442 2

01s:912ms 1,1484 3

01s:127ms 1,1582 4

02s:892ms 1,1393 5

Table II shows that the response time between the

commands sent and the middleware able to respond is

between 1 second to 2 seconds. Meanwhile, the thread

execution time starts from initialization to become a thread,

and sending 1x data takes> 1 second. The test was conducted

at night with good and stable internet conditions. The next test

is carried out sequentially, and data is taken from 5x

individual orders which are shown in Table III.

TABLE III

TEMPERATURE SENSOR ACCESS TESTING SEQUENTIALLY

Notation
Response

time (s)

Multiprocessing

execution time (s)
Trial

S,1,1

01s:102ms 1,1279 1

01s:923ms 1,1397 2

01s:124ms 1,1383 3

01s:721ms 1,1472 4

01s:436ms 1,1394 5

Table IV is the test results of CPU usage and memory

usage data between multiprocessing, multithreading, and

sequential access to temperature sensor functions. The

function is carried out individually, and 5 times the sampling

is taken.

TABLE IV

CPU AND MEMORY USAGE TESTING FOR MULTIPROCESSING,

MULTITHREADING, AND SEQUENTIAL TEMPERATURE SENSOR ACCESS

Multiprocessing (%) Multithreading (%) Sequential (%)

CPU Memory CPU Memory CPU Memory

8,7 2,4 8,7 2,8 10,5 2,7

7,7 2,4 7,9 2,8 10,3 2,7

8,3 2,4 8,9 2,8 9,9 2,7

9,1 2,4 9,7 2,8 10,7 2,7

8,9 2,4 9,3 2,8 9,7 2,7

From the 4 test points whose results are shown in Table I-

IV, it can be concluded that the command notation test was

successful. In testing the second point, namely retrieving

response time data between commands sent from Apps until

the middleware can respond to commands and retrieving data

when creating a process or thread from initializing to

becoming a process/thread. Multiprocessing and multithread

tests are carried out with 5 individual running

processes/threads. The sequential method is carried out 5

times the program runs because sequential programming can

only run 1 loop at a time.

CPU usage and memory usage are also compared when a

function is accessed using multiprocessing or multithread or

sequential programs. Figure 13 is a graph showing the

comparison of CPU and memory usage for temperature sensor

access.

Analysis on temperature sensor testing using

multiprocessing, multithreading, and sequential programs is

that there are differences in the completion of the 1x program

loop and CPU and memory use. After a 1x program loop,

multiprocessing records a slightly faster time than

multithreading or sequential. This happens because

multiprocessing uses different addressing space and CPU-core

in carrying out each process. While multithreading uses the

same CPU-core addressing space, the process execution is

slightly faster than the execution of a thread. A thread's

execution uses more CPU usage and memory usage because it

is in the same addressing space. A sequential program has the

 Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.6 No.1 January 2021, P-ISSN : 2502-3470, E-ISSN : 2581-0367

59

DOI : 10.25139/inform.v6i1.3346

same character as the execution of a thread. This is because, in

general, a program that is executed will become a thread. So

there is not much difference between CPU usage and memory

usage between multithreading and sequential.

Figure 13. Comparison graph between CPU and memory usage on

temperature sensor access

The next test is to test the system when it is used to access

a servo motor. Table V shows the response and execution

times using multiprocessing on servo motor access.

TABLE V

SERVO MOTOR ACCESS TESTING WITH MULTIPROCESSING

Notation Response time (s)
Multiprocessing

execution time (s)
Trial

A,4,1,10

02s:696ms 2,9388 1

02s:205ms 2,1954 2

02s:205ms 2,0789 3

01s:806ms 2,1595 4

02s:154ms 2,1391 5

The test in Table V shows that the response time between

commands sent from Apps to the middleware to respond is

between 1 second to almost 3 seconds. Meanwhile, the

process execution time starts from initialization to a process,

and sending 1x data takes> 2 seconds.

TABLE VI

SERVO MOTOR ACCESS TESTING WITH MULTITHREADING

Notation
Response time

(s)

Multiprocessing

execution time (s)
Trial

A,4,1,10

01s:478ms 2,1688 1

01s:579ms 2,2465 2

01s:442ms 2,3921 3

02s:581ms 2,6232 4

02s:251ms 2,2477 5

The results of the multithreading servo motor access test can

be seen in Table VI. The response time between Apps'

commands until the middleware can respond is between 1

second to almost 2. While the thread execution time starts

from initialization to becoming a thread, and sending 1x data

takes> 1 second.

TABLE VII

CPU AND MEMORY USAGE TESTING FOR MULTIPROCESSING,

MULTITHREADING, AND SEQUENTIAL SERVO MOTOR ACCESS

Multiprocessing(%) Multithreading(%) Sequential (%)

CPU Memory CPU Memory CPU Memory

1,70 2,70 0,70 2,70 0,70 2,70

1,10 2,40 0,70 2,70 0,70 2,70

1,20 2,70 0,70 2,70 0,70 2,70

1,70 2,70 1,30 2,70 1,30 2,70

1,80 2,40 0,87 2,70 0,70 2,70

Table VII is the test results of CPU usage and memory

usage data between multiprocessing, multithreading, and

sequential when accessing servo motors. This time, the

function is also carried out individually, and 5 times the

sampling is taken.

Comparison of CPU usage and memory usage when a

servo motor function is accessed using multiprocessing or

multithread or sequential programs is shown in Figure 14.

Figure 14. Comparison graph between CPU and memory usage on servo

motor access

Analysis on servo motor testing using multiprocessing,

multithreading, and sequential programs is that there are

differences in the completion of the 1x program loop and CPU

and memory use. After a 1x program loop, multiprocessing

records a slightly faster time than multithreading or sequential.

However, in experiments 1 and 2, the completion was slower.

This happens because multiprocessing uses different

addressing space and CPU-core in carrying out each process.

While multithreading uses the same CPU-core addressing

space, the process execution is slightly faster than the

execution of a thread. A thread's execution also uses CPU

usage and memory usage more because it is in the same

addressing space. Besides, the difference in experiments 1 and

2 occurs because it coincides with extensive processes carried

out by the OS so that the process carried out by the user is

slightly slowed down. There isn't much difference between

CPU usage and memory usage between multithreading and

sequential. Several conditions indicate that a small task such

as servo motor access is sometimes better done as a threat

than a process because the job is only one time, not

continuous like the sensor reading function.

 Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.6 No.1 January 2021, P-ISSN : 2502-3470, E-ISSN : 2581-0367

60

DOI : 10.25139/inform.v6i1.3346

IV. CONCLUSION

In multiprocessing, it will be more optimal to do complex

or continuous work such as reading sensors. When used to

access a sensor, a process is not always faster than a thread.

Such as temperature sensor access, whose execution time is in

the range <1,0001s, when it becomes a process and execution

time, is in the range> 1,1001s when it becomes a thread.

Meanwhile, multithreading will be more optimal for doing

small or non-continuous work such as actuator access. When

used to run sensors, not always a thread will execute faster

than a process. For example, the servo motor access has an

execution time of up to 2.9388s on the first try when it

becomes a process and up to 2.6232s execution time on the

fourth try when it becomes a thread.

ACKNOWLEDGMENT

The Highest appreciation for fellow researchers of the

Embedded Systems Laboratory Computer Engineering Study

Program, Surabaya State Electronics Polytechnic, and a big

thank you to the CE IoT community members.

REFERENCES

[1] S. Li, L. Da Xu, and S. Zhao, "The internet of things: a survey," Inf.

Syst. Front., 2015, DOI: 10.1007/s10796-014-9492-7.

[2] J. F. Nusairat, "Raspberry Pi," in Rust for the IoT, Berkeley, CA:

Apress, 2020, pp. 391–427.

[3] A. Jalil, “Pemanfaatan Middleware Robot Operating System (ROS)

Dalam Menjawab Tantangan Revolusi Industri 4.0,” Ilk. J. Ilm., 2019,

doi: 10.33096/ilkom.v11i1.412.45-52.

[4] M. R. Rizqullah, A. R. Anom Besari, I. Kurnianto Wibowo, R.

Setiawan, and D. Agata, "Design and Implementation of Middleware

System for IoT Devices based on Raspberry Pi," in 2018 International

Electronics Symposium on Knowledge Creation and Intelligent

Computing (IES-KCIC), Oct. 2018, pp. 229–234, DOI:

10.1109/KCIC.2018.8628528.

[5] A. H. H. Ngu, M. Gutierrez, V. Metsis, S. Nepal, and M. Z. Sheng,

"IoT Middleware: A Survey on Issues and Enabling technologies,"

IEEE Internet Things J., pp. 1–1, 2016, DOI:

10.1109/JIOT.2016.2615180.

[6] Y. Nakamura, H. Suwa, Y. Arakawa, H. Yamaguchi, and K. Yasumoto,

"Design and Implementation of Middleware for IoT Devices toward

Real-Time Flow Processing," 2016, DOI: 10.1109/ICDCSW.2016.37.

[7] N. S. Arora, R. D. Blumofe, and C. G. Plaxton, "Thread Scheduling for

Multi programmed Multiprocessors," Theory Comput. Syst., vol. 34, no.

2, pp. 115–144, Jan. 2001, DOI: 10.1007/s002240011004.

[8] F. Menczer, S. Fortunato, and C. A. Davis, "Python Tutorial," in A

First Course in Network Science, Cambridge University Press, 2020,

pp. 221–237.

[9] R. Odaira, J. G. Castanos, and H. Tomari, "Eliminating global

interpreter locks in ruby through hardware transactional memory,"

ACM SIGPLAN Not., 2014, DOI: 10.1145/2692916.2555247.

[10] L. Moroney and L. Moroney, "The Firebase Realtime Database," in

The Definitive Guide to Firebase, 2017.

[11] W. J. Li, C. Yen, Y. S. Lin, S. C. Tung, and S. M. Huang, "JustIoT

Internet of Things based on the Firebase real-time database," 2018,

DOI: 10.1109/SMILE.2018.8353979.

[12] J. Devietti, B. Lucia, L. Ceze, and M. Oskin, "DMP: Deterministic

Shared-Memory Multiprocessing," IEEE Micro, vol. 30, no. 1, pp. 40–

49, Jan. 2010, DOI: 10.1109/MM.2010.14.

