
Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi 

  Vol.8 No.2 July 2023, P-ISSN : 2502-3470, E-ISSN : 2581-0367 

 

137 

DOI: http://dx.doi.org/10.25139/inform.v8i2.6220 
 

Rescheduling Strategy for Container Orchestration System to Improve 

Application Availability 
Akhmad Alimudin1, Rahardhita Widyatra Sudibyo2 

 1Department of Multimedia Creative Technology, Politeknik Elektronika Negeri Surabaya, Indonesia 
2Telecommunication Engineering, Politeknik Elektronika Negeri Surabaya, Indonesia 

1alioke@pens.ac.id (*) 

2widi@pens.ac.id 

 

Received: 2023-04-27; Accepted: 2023-05-30; Published: 2023-06-05 

 
Abstract— Virtualization technologies such as containers have become increasingly popular and widely used today. Containers offer several 
advantages, such as flexibility, portability, and scalability. Container-supporting technologies such as container orchestration provide more 

advantages to container users to maintain the containers. One of the crucial features of container orchestration is the scheduler responsible for 

assigning containers to the proper server. However, container misplacement often occurs during the scheduling process, which may reduce the 

application's Quality of Service (QoS), such as availability. Multiple studies on scheduling strategies have been conducted with various goals, 

such as increasing application availability. To improve the application availability, we can reschedule the containers in the cluster. This study 

proposes a rescheduling strategy on the Kubernetes container orchestration system to improve the application available in the container. We use 

the probability approach as a solution for rescheduling actions in dynamic environments against containers that have an unhealthy state. Our 

experimental results show that our rescheduling strategy improves application availability compared with the Kubernetes default schedule. 
Rescheduling improves application availability according to experiments. After rescheduling, Kubernetes had a better application success rate. 

The chart demonstrates that the average success rate of applications for the threshold of 0.9 surpasses the other thresholds on average. In contrast, 

the availability of applications using the threshold 0f 0.7 is lower than the others. High thresholds improve application availability. 
 

Keywords— Container Orchestration; Scheduling; Stable Matching; Quality Of Service. 

 

I. INTRODUCTION 

Cloud computing is a widely used technology for providing 

IT-based services, such as web services, big data, or Internet of 

Things applications. Cloud computing offers several 

advantages to users, such as cost-efficiency, flexibility, and 

ease of use. Cloud computing technology is closely related to 

virtualization technology, which is identical to virtual machine 

(VM) technology, having several advantages over physical 

machines. In recent years, virtualization technologies other 

than VMs, such as containers, have become increasingly 

popular and widely used. Containers have a basic concept of 

virtualization technology similar to the techniques used in VMs, 

and containers also offer several advantages, such as resource 

effectiveness, flexibility, portability, and scalability. Recently, 

container users have also benefited from supporting container 

technology, such as container orchestration, designed to 

manage containers. Container orchestration tools make it easier 

for users to manage the tens, hundreds, or thousands of 

containers they maintain. Some well-known container 

orchestration tools include Kubernetes, Docker Swarm, 

Marathon, and Amazon ECS. 

One of the features offered by container orchestration is a 

scheduler responsible for assigning containers to proper hosts. 

The scheduler is an important component of the container 

orchestration system because it determines the application 

quality of service (QoS). Each container orchestration tool has 

a unique strategy for its scheduling process. Improper container 

placement strategies may negatively affect the QoS of 

containers. For instance, when the requested resource of the 

container is larger than the available host resources, the 

container's application cannot work optimally, thus decreasing 

the application's QoS or causing the application to stop 

functioning. This container misplacement problem frequently 

occurs in the scheduling process because the user cannot define 

the container resource requirements specifically; therefore, the 

scheduler does not know the resource requirements to properly 

place the container. 

Moreover, the scheduler does not have historical data 

regarding the resource requirements of each existing container. 

The container's dynamic situation and the diversity in host 

resource capabilities pose a challenge to presenting a good 

scheduling strategy for container orchestration systems. 

Several studies regarding strategies in the scheduling process 

have been performed to achieve a better result. 

Several efforts have been offered to improve the QoS on 

containers, such as Kubernetes, which provides autoscaling 

features to maintain the QoS. Another way to improve the QoS 

of containers is rescheduling the container. Rescheduling a 

container is quite challenging because the situations of the 

environment change dynamically. For instance, a container 

requires low resources at certain times but might require very 

high resources in the next few minutes. Therefore, we need an 

excellent strategy to obtain the pair's stability between the 

cluster's container and server. For example, the Kubernetes 

scheduler mechanism cannot manage the risk of resource 

overloading when several applications on the same host are 

competing for resources, such as the CPU [1]. 
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This study offers a strategic solution for scheduling 

containers using a probability approach and a stable matching 

to solve this problem. This research aims to improve the 

application availability by finding the most stable pair between 

container and server. Our previous research proposed the 

creation of a scheduler for containers by implementing stable 

one-to-one matching (known as stable marriage problem 

(SMP), in a static environment [2]. We also examined a 

scheduling strategy using the SMP to run in dynamic conditions 

by rescheduling the current partner [3]. However, we do not use 

the SMP algorithm in this research, a one-to-one model of 

stable matching used in our previous research. Our current 

strategy is to use the hospital/resident problem algorithm [4], a 

many-to-one model of the stable matching problem applicable 

in this case, where one node may serve more than one container. 

We use the probability approach as a solution for rescheduling 

actions in dynamic environments against containers that have 

an unhealthy state.  

In this study, we attempted to implement our scheduling 

strategy on Kubernetes, a well-known and widely used 

container orchestration system today. Our paper is organized as 

follows. Section 2 briefly explains the research methodology, 

including the system design. In Section 3, we provide and 

evaluate our experiments on the rescheduling process. In 

Section 4, we provide the conclusions of this study. 

II. RESEARCH METHODOLOGY 

This section describes the research methodology of this 

study. The research methodology in this study is described as 

follows: 

1) Literature study: we reviewed several similar studies 

that had been conducted and related to our research. 

2) Problem analysis: the problem is analyzed based on our 

literature study. 

3) System design: we study the Kubernetes architecture 

and design our new scheduler using the stable matching 

problem. 

4) Evaluation: we evaluate and compare our proposed 

system with the existing method/system. 

5) Conclusion: we provide our conclusion of this study that 

the reader can consider. 

A. Related Work 

Table I summarizes the scheduling strategies for 

virtualization technology related to our study.

 

TABLE I 

SUMMARY OF RELATED WORK 

Author Objective Platform Algorithm / Technique 
Kaewkasi et al. [5] Resource utilization optimization Docker Swarm Ant colony 
Chen et al. [6] Energy efficiency Cloud Simulation Many-to-one stable matching 
Cerin et al. [7] QoS improvement Rule-based by SLA Rule-based 

Menouer Tarek [8] QoS improvement and energy efficiency Kubernetes TOPSIS multicriteria 
Alimudin et al. [3] QoS improvement Kubernetes Reschedule using a stable marriage problem 

Rodriguez et al. [9] Cost-efficient Kubernetes Optimizing initial placement, autoscaling, and 

rescheduling 
Xu et al. [10] QoS improvement and cost-efficiency Virtual machine Egalitarian stable matching 

Our proposed system Qos improvement Kubernetes Reschedule using a many-to-one stable matching 

algorithm 
 

B. Literature Study 

The main components of our proposed system. A container 

orchestration system is a technology that helps users manage 

their container assets. This study offers a scheduling strategy 

for Kubernetes to improve the application's QoS. Before 

explaining our concept in detail, we will briefly explain 

Kubernetes and Stable Matching in this section.  

1) Kubernetes Container Orchestration System: Container 

orchestration is a set of operations offered by cloud providers 

or application managers, which are used to deploy, monitor, 

and dynamically manage resources to ensure the QoS [11]. This 

container orchestration tool enables the application manager to 

deploy and monitor resources dynamically to produce high 

availability for services that are being created. Kubernetes is a 

container orchestration tool widely used today, a Google open-

source project previously known as Google Borg [12]. The 

Kubernetes cluster consists of two main parts: the Kubernetes 

control plane, the master node, and the Kubernetes nodes, or 

worker nodes. The control plane manages worker nodes and 

pods in a cluster. The worker node is a host for the pods to run 

their containers. 

• As shown in Figure 1, a Kubernetes cluster has several 

components. This section will discuss some of the 

Kubernetes' components [13] related to this research. 

• Kubernetes' components referenced in this work are 

described as follows: The master node or control plane 

manages the worker nodes and pods in a cluster. The 

master node handles the global events in a cluster, such as 

scheduling. 

• The worker nodes are hosts for the pods to run their 

containers. The worker nodes can be bare metal or virtual 

machines. 

• Pods are the smallest execution units in Kubernetes. A 

single pod may encapsulate one or more containers. This 
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study will find the stable pair between pods and worker 

nodes. 

• The kube-Apiserver is a part of the control plane 

component responsible for exposing the Kubernetes API. 

The kube-Episerver represents the front end of the 

Kubernetes' control plane.

 

 

Figure 1. Kubernetes Architecture 

 

The scheduler is one of the components that the container 

orchestration system must provide. As a well-known container 

orchestration system, Kubernetes provides a scheduling 

component called Kube-scheduler, located in the control plane. 

The Kube scheduler works in two steps [14]: 

• Filtering: This step finds nodes that can meet the resource 

requirements of the pods' request. For instance, the 

scheduler will filter all available nodes to see if resources 

are available according to the pods' minimum 

requirements. 

• Scoring: This step ranks nodes that pass the filtering step. 

2)  Stable Matching: The basic concept of stable one-to-one 

matching by Gale-Shapley or SMP. The core of SMP is the 

matching group between n men and n women, where any 

matched partner has no desire to switch to another partner. In 

other words, no pair that is better than the existing one exists 

called a blocking pair. This is the basic concept of the stable 

matching problem proposed by Gale-Shapley [15]. In Figure 2, 

a man in m1 has options of woman preference order (𝑤1, 𝑤2, 𝑤3, 

𝑤4) where the preference order is based on the ranking order (1, 

2, 3, 4), which means that the man 𝑚1 likes 𝑤1 the most, then 

𝑤2, 𝑤3, and 𝑤4 as the last options. The SMP algorithm matches 

n-man and n-woman, considered the most stable. If a blocking 

pair is found, it must be eliminated to achieve stability in the 

group match. The SMP concept is widely used to solve various 

economic problems. Another popular stable matching problem 

is the HR problem [4], a many-to-one model used to solve the 

placement for internship medical students (residents) in 

hospitals. 

 

 
Figure 2. Illustration of SMP 

C. Problem analysis 

In this study, the HR problem case is suitable to use in the 

assignment process between containers and servers. Given the 

preference from the container 𝑃𝑐 = 𝑃𝑐1, 𝑃𝑐2, 𝑃𝑐3, ..., 𝑃𝑐n and the 

server 𝑃𝑠 = 𝑃𝑠1, 𝑃𝑠2, ..., 𝑃𝑠m, we can solve the stable matching 

problem using the HR problem model. Matching is stable if 

there are no pairs in the following condition: (i) Container c 

1   2  3  4 

3  2 1 4 

1   2  4 3 

3  1  4  2 

m 1 

m 2 

m 3 

m 4 

1   2  3  4 

2  1  4  3 

2   3  1  4 

  1 4  3 2 

w 1 

w 2 

w 3 

w 4 

Rank Node Node Rank 

Pair 
Edge ) ( 



Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi 

  Vol.8 No.2 July 2023, P-ISSN : 2502-3470, E-ISSN : 2581-0367 

 

140 

DOI: http://dx.doi.org/10.25139/inform.v8i2.6220 
 

prefers server s over the matched pairs, (ii) Server s chooses to 

add container c and remove the matched container. Several 

improvements to the algorithm were suggested to be suitable 

and implementable in many case studies. In the case of SMP, 

we used deterministic matching, where the preferences of each 

pair were predefined. 

D. System design 

Figure 3 shows our proposed system, which is a 

modification of the original architecture of Kubernetes. 

Compared with the original architecture shown in Figure 1, the 

proposed system is modified by adding two components to the 

master node or control plane: the reschedule controller and 

matching scheduler. Kubernetes was built based on the Go 

programming language. Kubernetes client libraries are also 

available in various programming languages. In this study, we 

develop our proposed scheduler using Python. In the worker 

node part, we activate liveness probes for each pod to monitor 

each running pod's health condition. The step for our proposed 

method is as follows: 

• Reschedule the controller to monitor the health condition of 

each container. If the unhealthy container is found under the 

threshold, then initiate rescheduling, 

• Matching Scheduler performs the stable matching method 

based on the trigger of the rescheduled controller. 

In contrast, the preferences are dynamic in the real case, so 

finding a stable partner is difficult. One of the proposed 

concepts for this case is using a probabilistic approach. The 

concepts presented by [16] about probabilistic matching use a 

probabilistic approach to rematch the matched pairs.  

1)  Reschedule Controller: The dynamic situation in 

Kubernetes' clusters is challenging to find stability using the 

Gale-Shapley algorithm. Finding a stable pair in dynamic 

situations when referring to the Gale-Shapley stability concept 

is difficult. For example, we use CPU and memory resource 

usage to specify the preference orders for each pair. In dynamic 

situations, the order of preference in the cluster will always 

change because the resource request is changed dynamically. 

Therefore, the process of finding a stable pair will continue 

when a change in resource request occurs. Finding stable pairs 

in this dynamic situation is difficult because blocking pairs may 

occur frequently. To solve these dynamic situations, we offer a 

rescheduled controller to control the stable matching process in 

dynamic situations. Therefore, the stable matching process 

does not run continuously. Reschedule controller is a service 

that determines whether a running pod needs to reschedule. 

This service works by periodically observing a pod's activity 

and health condition. As shown in Figure 3, we activate the 

liveness probes for every deployed pod in a cluster. The 

liveness probes are features Kubernetes provides to detect a 

broken state of pods. For instance, Kubernetes uses liveness 

probes to decide when to restart a container inside the pod [17]. 

In this study, the rescheduled controller uses the liveness probes 

to decide whether or not the Kubernetes cluster needs to be 

rescheduled. Figure 4 shows how the rescheduled controller 

works. The liveness probes periodically check each running 

pod's health condition in a cluster; when the liveness probes 

find that the service in a container is unable to serve the requests, 

the liveness probes will mark this as an unhealthy pod event 

and send the report to the event logger. The rescheduled 

controller periodically calculates the probability of pod 

 

 

Figure 3. The Proposed Scheduler System on Kubernetes 
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happiness based on the number of unhealthy events for each 

pod. The rescheduled controller periodically checks the 

happiness probability Pr for every deployed pod and compares 

it with the user-defined minimum probability threshold. When 

the Pr is less than the threshold, the reschedule controller will 

initiate the reschedule in a cluster, and the next process will be 

handover to a matching scheduler. This reschedule-controller 

allows the user to determine the desired threshold. In the 

evaluation chapter, we will discuss the impact of the threshold 

on applications' QoS. 

 

 
Figure 4. Reschedule controller. 

2)  Matching Scheduler: The scheduler is one of the 

Kubernetes control plane's main components responsible for 

assigning a newly deployed pod to available proper nodes. 

Kubernetes also comes with a default scheduler called the Kube 

scheduler. This study proposes a scheduling strategy using a 

stable matching problem algorithm for the Kubernetes 

container orchestration system, which we call a matching 

scheduler. The matching scheduler is a custom scheduler we 

developed for assigning the pod to the proper nodes in this 

study. Fortunately, Kubernetes provides a feature for the 

developer to customize the scheduler component. We develop 

our custom pod scheduler based on the many-to-one stable 

matching or HR problem, which is also used to solve medical 

student assignment problems such as the national resident 

matching program (NRMP) [18]. The reschedule controller will 

initiate a reschedule for the pod from the previous process in 

the reschedule controller when a pod's probability of happiness 

is less than the predetermined minimum threshold. The 

reschedules initiation process put the pods in a pending state. 

The matching scheduler works by monitoring each pending pod 

and is responsible for finding suitable nodes for that pod. The 

matching scheduler uses the many-to-one stable matching 

algorithm in pod assignment to servers. The algorithm requires 

a preference list for each pod and node to find stable matching. 

We need historical data from each party to discover the new 

preference list for each side, such as CPU and memory usage. 

In the next subsection, we will discuss establishing preferences 

from the pod to the node and vice versa. 

a) Pods to worker nodes' preference 

A pod is a place to run a service on the Kubernetes cluster, 

and a service naturally needs a place that can meet its 

requirements to run the service properly. Therefore, a service 

wants a pod to run optimally. To make a pod work optimally, 

we need a proper worker node to provide resources according 

to the pod's needs. The correct steps to assign a pod on one of 

the worker nodes are needed to achieve this goal. We do not 

have to assign the pods to the most excellent worker node to 

determine the pod's preference order to the worker node [6]. We 

simply need to find the closest distance between the worker 

node's resources and the pod's resource usage based on the 

historical data of the pod. In this case, we use the Euclidean 

distance formula to measure the distance. We try to find the 

distance using the two-dimensional Euclidean distance from 

the memory and CPU usage of the pod to each worker node's 

available memory and CPU resource. In this study, we collect 

the CPU and memory usage for each pod in the local database. 

Assuming that x is the resource capability of the worker node 

and y is the number of resources used by the pod, the Euclidean 

distance Equation (1). 

 

𝑑(𝑥, 𝑦) =  √(𝑥2 −  𝑥1)2 + (𝑦2 −  𝑦1)2  (1) 

 

Where the (𝑥1, 𝑦1) variable is the coordinates of one point; the 

(𝑥2, 𝑦2) variable is the coordinates of the other point; and the d 

variable is the distance between (𝑥1, 𝑦1) and (𝑥2, 𝑦2). 

After the distance from each pod to the worker node is 

obtained, the next step is to run the sorting to determine the 

preference order. To obtain the preference list order, we need to 

perform more steps to produce the preference list order, as 

shown in Algorithm 1.  
 

 
 

Algorithm 1's main iteration is for all pods deployed in the 

Kubernetes cluster with the default namespaces. Using the two-

dimensional Euclidean distance formula, the pod will measure 

the distance to each worker node. In this case, we use memory 

and CPU as the measured resources. After the distance between 

the pod and the worker node has been obtained, the next step is 

to check whether the worker node's resource is more excellent 

 

   
   

D = euclidean(node, pod); 
 podRequest > availableNode  
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than the pod's needs. When the worker node's resource is 

smaller than the resource expected by the pod, the distance is 

marked as a negative value. The next step is obtaining the node 

candidates by filtering the negative value of the distance. The 

worker node will not be listed on the pod's preference list if the 

distance is negative. The last step to define the preference list 

is sorting the available candidates of worker nodes in ascending 

mode. 

b) Worker nodes to Pods Preference 

The viewpoint of worker nodes to pods differs from how pods 

view worker nodes. While pods determine worker nodes' 

preference based on the resource capabilities of a worker node, 

worker nodes determine the order of pods from another point 

of view by looking at resource efficiency. Several studies have 

revealed the relationship between CPU usage and power 

consumption. CPU resource usage is linearly related to power 

consumption [19–21]. Several studies [6, 19] used the CPU 

variable to show power consumption efficiency in computer 

devices. This study uses CPU usage as a reference for assigning 

worker node preferences to pods. We then use the idle CPU 

usage data history as a variable to determine the preference list 

order of worker nodes to pods. To determine the priority order, 

we use sorting from the CPU usage of the pods. The worker 

node's preference order to the pod will prioritize the pod with 

the highest resource usage. We prioritize pods with high CPU 

utility due to the linear relationship between CPU usage and 

power consumption based on reference [20,22], which reveals 

that the number of idle conditions in a data center is more 

frequent than those at full load. 

c) Rescheduling Process 

The scheduling process aims to ensure that a pod can acquire 

the proper node. Finding an appropriate and stable pair between 

pod and node in real conditions is still difficult because the 

system cannot find the essential information needed, such as 

each pod's resource usage history. The user is also unable to 

define the resource requirements of the pod precisely. Improper 

pod placement may produce several cluster problems, such as 

power inefficiency in the nodes and decreasing QoS in a pod 

due to a lack of resources. Based on those situations, a 

reschedule or rematch process between pods and nodes may 

sometimes need to be performed to obtain a stable pair between 

pods and nodes. One technique that can be used for assigning a 

pod to the node is using the many-to-one model of the stable 

matching algorithm. The algorithm can work optimally when 

the preference of each object is a certainty. 

More detailed and accurate information corresponds to more 

optimal results. Hence, stability can be achieved. However, the 

matching problem we are currently discussing is dynamic, 

which may cause each object's preferences to fluctuate. For 

illustration, the current CPU requirements of a pod could differ 

from that of the next hour. With this dynamic preference 

situation, achieving a stable pair will be challenging if we use 

the stability concept of Gale-Shapley, where no pairs are better 

than the current pair. Furthermore, this situation may trigger the 

system to perform the matching process continuously and 

infinitely. 

To avoid the repeated rescheduling process due to the 

cluster's dynamic situation, we use a probability approach to 

determine when the cluster's rescheduling process occurs. 

Figure 4 shows the rescheduled controller flow diagram process, 

which produces rescheduled initiation on the cluster. When a 

rescheduled controller initiates a rescheduling, Kubernetes 

gives a signal to reschedule all pods in the cluster. Afterward, 

our matching scheduler starts rescheduling all pods in the 

cluster. Figure 5 shows a flow diagram of how our matching 

scheduler works. The matching scheduler works based on 

triggers from the rescheduled controller. When triggered, the 

matching scheduler generates a preference for each pod and 

node in the cluster. The next process assigns pods to the node 

when a stable matching pair is obtained. The algorithm used to 

match the process can be seen in algorithm 2. This algorithm is 

based on the algorithm from the NRMP case [18]. We make a 

few modifications to adapt to the dynamic situation in the 

cluster. 

 
Figure 5. Matching-Scheduler Triggered by The Probability Controller To 

Perform The Rescheduling In A Cluster. 

 

In the NRMP algorithm, which attempts to solve the problem 

of residents' placement in a hospital, each hospital can 

determine the residents' quota at the beginning of the process. 

However, in our current case, we cannot define each server's 

quota at the beginning of the process because each pod's 

resource needs change frequently. It can be seen in algorithm 2; 

we make modifications to the algorithm to define each server's 

quota to adapt in dynamic conditions, given that the resource 

capacity of host is 𝑅𝐻 and maximum resource usage of pod is 

𝑀𝑃. To find the quota can be written as 𝑅𝐻 > 𝑀𝑃 + ∑ 𝑀𝑃𝑖𝑛
𝑖=0  , 

where n is the number of matched pods in the host. In this study, 

we are using the pod-optimal stable matching.  
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III. RESULT AND DISCUSSION 

This section will discuss our experiences with our 

scheduling strategy for Kubernetes. In this experiment, we 

created four virtual servers that run on the VirtualBox platform. 

The four servers were physically located on a single 64-bit 

architecture physical server, which had a 12core Intel i7 

processor with a speed of 3.4 GHz CPU and 64 GB of DDR-III 

RAM. All experiments in this study were performed on this 

physical machine, and each virtual server had a different CPU 

and memory resource configuration on each server. The four 

servers consisted of one master node and three worker nodes. 

The main server (physical server) and virtual server were 

running Ubuntu 18.04.3 LTS. Table II shows the resource 

specification of each node in the cluster. 

TABLE II 

NODE'S RESOURCE SPECIFICATION 

Hostname Processor number Memory 
master node 4×VCPUs 12 GB 
worker01 12×VCPUs 12 GB 
worker02 5×VCPUs 8 GB 
worker03 8×VCPUs 16 GB 

 

For the simulation scenario, 15 web applications with 

different characteristics were deployed into the Kubernetes 

cluster. We built 15 different PHP applications with different 

resource usage characteristics into docker images [23]. We 

built a simple arithmetic PHP application with various 

iterations. Each application has its unique resource usage, even 

when it is idle or loaded with traffic. 

 

To determine the effectiveness of our proposed system, we 

evaluate our rescheduled controller and matching scheduler 

components. We evaluate the rescheduled controller by 

applying various thresholds to discover its ability to control the 

occurrence of the rescheduled event. To discover the 

effectiveness of the matching scheduler, we evaluate the QoS 

of the 15 deployed applications. QoS requirements are 

technical criteria that define the quality of the system aspects 

such as performance, availability, scalability, and serviceability 

[24]. In this study, we focus on maintaining the availability 

aspect of QoS, measuring how often a system's resources and 

services are accessible to end users. We used Vegeta [25] as a 

load-test tool to measure the system's availability. We 

performed the load test on the application simultaneously using 

various load rates. The number of requests an application 

receives in one second is called its load rate. The application 

we evaluated is a web application that utilizes the standard 

configuration of the Apache2 server. As a result, we decided to 

set our maximum load rate at 150 to avoid any potentially 

deceptive and unhealthy occurrences that could have been 

generated by Apache2 itself rather than a lack of resources. Our 

current stable matching algorithm is pod optimal; thus, we did 

not evaluate the power consumption of the servers. 

A. Rescheduling Evaluation 

This research evaluated the rescheduled controller module 

we developed and attempted to prove the effectiveness of the 

happiness probability threshold on the scheduler's performance. 

In this step, we tried to compare three values of the happiness 

probability threshold to discover the number of reschedules in 

the system needed to achieve stable matching. The happiness 

probability threshold was used to control the intensity of the 

rescheduling process. We evaluated the rescheduling process 

using three different threshold levels in this scenario. For each 

 
Algorithm 2: Pod optimal many-to-one Stable matching with dynamic quota 

 

   
   

 hostRemainingResource > sum(PodMaxResourceUsage in hostMatch)  
   

 
 

 
 

 
 

   
   

   
 

unlock(podMatch) 
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simulation, we gradually performed load tests for 15 deployed 

pods using Vegeta with various load rates. Each deployed pod 

was loaded with various load rates simultaneously. We 

evaluated how many reschedules were required to achieve a 

stable match for each rate. 

As shown in Table 3, a threshold of 0.7 requires three total 

reschedules to achieve a stable pair at the 150 load rate, whereas 

the simulation with 0.8 and 0.9 thresholds requires 13 times 

rescheduling to achieve a stable match condition. The 

simulations show that the rescheduling process repeatedly 

occurred during attempts to achieve stability with a high load 

rate because more resources were needed when the pod 

attempted to serve numerous requests. Meanwhile, the 

availability of resources on the worker node was approaching 

the limit. The trade-off concept is needed to achieve stability 

and better QoS by removing multiple pods from the cluster. 

However, when we set the probability threshold to 0.7, the 

number of reschedules that occurred was not as high as those at 

thresholds of 0.8 and 0.9, and no pods were dumped for the 

threshold of 0.7. In the next subsection, we evaluate the 

performance of the pods based on the new pair generated by the 

reschedules of each threshold.  

B. Evaluation of application availability 

This research aims to improve the availability of applications 

in a cluster using a rescheduling strategy. To demonstrate the 

effectiveness of our strategy, we performed load tests using 

Vegeta on the 15 deployed applications. We compared 

application availability when using the scheduling composition 

using Kubernetes with three variations of the scheduling 

composition after rescheduling. 

 
TABLE II 

RESCHEDULE PERFORMACE 

Vegeta 

Load rate 

(rate/s) 

  
Probability Threshold 

   

 
0.7 

  
0.8 

  
0.9 

 

Rematch # of rematch dumped pods Rematch # of rematch dumped pods Rematch # of rematch dumped pods 

50 NO 0 - NO 0 0 NO 0 - 

60 NO 0 - NO 0 0 NO 0 - 

70 NO 0 - NO 0 0 NO 0 - 

80 NO 0 - NO 0 0 YES 1 0 

90 NO 0 - YES 1 0 YES 1 0 

100 NO 0 - NO 0 - NO 0 - 

110 YES 1 0 YES 2 0 YES 1 0 

120 YES 1 0 NO 0 - NO 0 - 

130 YES 1 0 YES 9 4 YES 8 5 

140 NO 0 - YES 1 6 YES 2 5 

150 NO 0 - NO 0 - NO 0 - 

However, Table III shows that a trade-off process occurs by 

removing some pods from the cluster during the load test 

process with a rate of 130/s. Therefore, we use the rescheduling 

results of each threshold variation obtained during the load test 

with the 120/s rate in this experiment. This research 

simultaneously performed a load test for 5 minutes on each load 

rate variant for the 15 applications.  

Figure 6 shows the average success rate of these 15 

applications during the load test. The experimental results show 

that rescheduling positively impacts the application's 

availability. The average success rate of applications after 

rescheduling was higher than the success rate during the initial 

scheduling with Kubernetes. Figure 6 also shows the impact of 

the threshold in the rescheduled controller on the application's 

availability. The chart shows that the average success rate of 

applications for the threshold of 0.9 outperforms the other 

thresholds on average. 

In contrast, the availability of the applications for the 

threshold of 0.7 is always below the other thresholds at a load 

rate above 70/s. A high threshold corresponds to better 

availability of the application. However, the users need to 

consider the trade-off effects when defining a high threshold, 

such as some pods being removed from the cluster to achieve a 

better QoS. 
 

 
Figure 6. Comparison Of Applications Success Rate For Each Schedule 

 

Figure 7 compares CPU and memory usage in each 

scheduling composition. The average resource usage after 

rescheduling is higher than that of Kubernetes scheduling. This 
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situation explains why the application availability while using 

Kubernetes scheduling in Figure 6 is lower than after 

rescheduling.  
 

 
Figure 7. Pods Resource Usage 

This occurred because the server could not satisfy the pods' 

needs when the applications requested more resources. 

Whereas Figure 8 shows the average percentage of the total 

resource usage of each server. When Kubernetes scheduling 

was applied, worker02, which has the smallest CPU resource 

specification on the cluster, used a very high average CPU, 

close to 100%. Worker01 and worker03, which had more CPU 

resources than worker02, had many unused resources. This 

situation shows the misplacement during scheduling with 

Kubernetes due to a lack of information about the 

characteristics of the application in the container. The 

applications can achieve better availability when rescheduling 

is performed on the cluster. In this experiment, the memory 

usage in the application did not considerably affect the 

application's availability because a large amount of memory 

resources remained. 

 
Figure 8. Server Resource Usage 

IV. CONCLUSION 

Rescheduling is one of the strategies that can be used to 

increase the QoS of an application in a container cluster. Using 

a many-to-one stable matching algorithm, we can perform the 

scheduling process between containers and servers. The 

probability technique can be used to manage the frequency of 

the rescheduling process in a cluster, which is necessary to 

apply a stable matching algorithm to an environment with a 

dynamic cluster. The experiment results demonstrate that our 

rescheduling strategy improved the availability of the 

application. A high value of the happiness probability threshold 

corresponds to better QoS achieved. However, applying the 

trade-off concept to clusters, such as removing multiple 

containers from clusters when the server capacity exceeds the 

limit, is sometimes necessary to obtain a better QoS. 

Several issues can be improved in this study, such as how to 

manage the trade-off effects. Our next study will enhance our 

findings by evaluating a trade-off effect to achieve a better QoS. 

Another issue that needs to resolve is related to energy saving 

in the cluster. 
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