
Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.8 No.2 July 2023, P-ISSN : 2502-3470, E-ISSN : 2581-0367

137

DOI: http://dx.doi.org/10.25139/inform.v8i2.6220

Rescheduling Strategy for Container Orchestration System to Improve

Application Availability
Akhmad Alimudin1, Rahardhita Widyatra Sudibyo2

 1Department of Multimedia Creative Technology, Politeknik Elektronika Negeri Surabaya, Indonesia
2Telecommunication Engineering, Politeknik Elektronika Negeri Surabaya, Indonesia

1alioke@pens.ac.id (*)

2widi@pens.ac.id

Received: 2023-04-27; Accepted: 2023-05-30; Published: 2023-06-05

Abstract— Virtualization technologies such as containers have become increasingly popular and widely used today. Containers offer several
advantages, such as flexibility, portability, and scalability. Container-supporting technologies such as container orchestration provide more

advantages to container users to maintain the containers. One of the crucial features of container orchestration is the scheduler responsible for

assigning containers to the proper server. However, container misplacement often occurs during the scheduling process, which may reduce the

application's Quality of Service (QoS), such as availability. Multiple studies on scheduling strategies have been conducted with various goals,

such as increasing application availability. To improve the application availability, we can reschedule the containers in the cluster. This study

proposes a rescheduling strategy on the Kubernetes container orchestration system to improve the application available in the container. We use

the probability approach as a solution for rescheduling actions in dynamic environments against containers that have an unhealthy state. Our

experimental results show that our rescheduling strategy improves application availability compared with the Kubernetes default schedule.
Rescheduling improves application availability according to experiments. After rescheduling, Kubernetes had a better application success rate.

The chart demonstrates that the average success rate of applications for the threshold of 0.9 surpasses the other thresholds on average. In contrast,

the availability of applications using the threshold 0f 0.7 is lower than the others. High thresholds improve application availability.

Keywords— Container Orchestration; Scheduling; Stable Matching; Quality Of Service.

I. INTRODUCTION

Cloud computing is a widely used technology for providing

IT-based services, such as web services, big data, or Internet of

Things applications. Cloud computing offers several

advantages to users, such as cost-efficiency, flexibility, and

ease of use. Cloud computing technology is closely related to

virtualization technology, which is identical to virtual machine

(VM) technology, having several advantages over physical

machines. In recent years, virtualization technologies other

than VMs, such as containers, have become increasingly

popular and widely used. Containers have a basic concept of

virtualization technology similar to the techniques used in VMs,

and containers also offer several advantages, such as resource

effectiveness, flexibility, portability, and scalability. Recently,

container users have also benefited from supporting container

technology, such as container orchestration, designed to

manage containers. Container orchestration tools make it easier

for users to manage the tens, hundreds, or thousands of

containers they maintain. Some well-known container

orchestration tools include Kubernetes, Docker Swarm,

Marathon, and Amazon ECS.

One of the features offered by container orchestration is a

scheduler responsible for assigning containers to proper hosts.

The scheduler is an important component of the container

orchestration system because it determines the application

quality of service (QoS). Each container orchestration tool has

a unique strategy for its scheduling process. Improper container

placement strategies may negatively affect the QoS of

containers. For instance, when the requested resource of the

container is larger than the available host resources, the

container's application cannot work optimally, thus decreasing

the application's QoS or causing the application to stop

functioning. This container misplacement problem frequently

occurs in the scheduling process because the user cannot define

the container resource requirements specifically; therefore, the

scheduler does not know the resource requirements to properly

place the container.

Moreover, the scheduler does not have historical data

regarding the resource requirements of each existing container.

The container's dynamic situation and the diversity in host

resource capabilities pose a challenge to presenting a good

scheduling strategy for container orchestration systems.

Several studies regarding strategies in the scheduling process

have been performed to achieve a better result.

Several efforts have been offered to improve the QoS on

containers, such as Kubernetes, which provides autoscaling

features to maintain the QoS. Another way to improve the QoS

of containers is rescheduling the container. Rescheduling a

container is quite challenging because the situations of the

environment change dynamically. For instance, a container

requires low resources at certain times but might require very

high resources in the next few minutes. Therefore, we need an

excellent strategy to obtain the pair's stability between the

cluster's container and server. For example, the Kubernetes

scheduler mechanism cannot manage the risk of resource

overloading when several applications on the same host are

competing for resources, such as the CPU [1].

mailto:alioke@pens.ac.id

Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.8 No.2 July 2023, P-ISSN : 2502-3470, E-ISSN : 2581-0367

138

DOI: http://dx.doi.org/10.25139/inform.v8i2.6220

This study offers a strategic solution for scheduling

containers using a probability approach and a stable matching

to solve this problem. This research aims to improve the

application availability by finding the most stable pair between

container and server. Our previous research proposed the

creation of a scheduler for containers by implementing stable

one-to-one matching (known as stable marriage problem

(SMP), in a static environment [2]. We also examined a

scheduling strategy using the SMP to run in dynamic conditions

by rescheduling the current partner [3]. However, we do not use

the SMP algorithm in this research, a one-to-one model of

stable matching used in our previous research. Our current

strategy is to use the hospital/resident problem algorithm [4], a

many-to-one model of the stable matching problem applicable

in this case, where one node may serve more than one container.

We use the probability approach as a solution for rescheduling

actions in dynamic environments against containers that have

an unhealthy state.

In this study, we attempted to implement our scheduling

strategy on Kubernetes, a well-known and widely used

container orchestration system today. Our paper is organized as

follows. Section 2 briefly explains the research methodology,

including the system design. In Section 3, we provide and

evaluate our experiments on the rescheduling process. In

Section 4, we provide the conclusions of this study.

II. RESEARCH METHODOLOGY

This section describes the research methodology of this

study. The research methodology in this study is described as

follows:

1) Literature study: we reviewed several similar studies

that had been conducted and related to our research.

2) Problem analysis: the problem is analyzed based on our

literature study.

3) System design: we study the Kubernetes architecture

and design our new scheduler using the stable matching

problem.

4) Evaluation: we evaluate and compare our proposed

system with the existing method/system.

5) Conclusion: we provide our conclusion of this study that

the reader can consider.

A. Related Work

Table I summarizes the scheduling strategies for

virtualization technology related to our study.

TABLE I

SUMMARY OF RELATED WORK

Author Objective Platform Algorithm / Technique
Kaewkasi et al. [5] Resource utilization optimization Docker Swarm Ant colony
Chen et al. [6] Energy efficiency Cloud Simulation Many-to-one stable matching
Cerin et al. [7] QoS improvement Rule-based by SLA Rule-based

Menouer Tarek [8] QoS improvement and energy efficiency Kubernetes TOPSIS multicriteria
Alimudin et al. [3] QoS improvement Kubernetes Reschedule using a stable marriage problem

Rodriguez et al. [9] Cost-efficient Kubernetes Optimizing initial placement, autoscaling, and

rescheduling
Xu et al. [10] QoS improvement and cost-efficiency Virtual machine Egalitarian stable matching

Our proposed system Qos improvement Kubernetes Reschedule using a many-to-one stable matching

algorithm

B. Literature Study

The main components of our proposed system. A container

orchestration system is a technology that helps users manage

their container assets. This study offers a scheduling strategy

for Kubernetes to improve the application's QoS. Before

explaining our concept in detail, we will briefly explain

Kubernetes and Stable Matching in this section.

1) Kubernetes Container Orchestration System: Container

orchestration is a set of operations offered by cloud providers

or application managers, which are used to deploy, monitor,

and dynamically manage resources to ensure the QoS [11]. This

container orchestration tool enables the application manager to

deploy and monitor resources dynamically to produce high

availability for services that are being created. Kubernetes is a

container orchestration tool widely used today, a Google open-

source project previously known as Google Borg [12]. The

Kubernetes cluster consists of two main parts: the Kubernetes

control plane, the master node, and the Kubernetes nodes, or

worker nodes. The control plane manages worker nodes and

pods in a cluster. The worker node is a host for the pods to run

their containers.

• As shown in Figure 1, a Kubernetes cluster has several

components. This section will discuss some of the

Kubernetes' components [13] related to this research.

• Kubernetes' components referenced in this work are

described as follows: The master node or control plane

manages the worker nodes and pods in a cluster. The

master node handles the global events in a cluster, such as

scheduling.

• The worker nodes are hosts for the pods to run their

containers. The worker nodes can be bare metal or virtual

machines.

• Pods are the smallest execution units in Kubernetes. A

single pod may encapsulate one or more containers. This

Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.8 No.2 July 2023, P-ISSN : 2502-3470, E-ISSN : 2581-0367

139

DOI: http://dx.doi.org/10.25139/inform.v8i2.6220

study will find the stable pair between pods and worker

nodes.

• The kube-Apiserver is a part of the control plane

component responsible for exposing the Kubernetes API.

The kube-Episerver represents the front end of the

Kubernetes' control plane.

Figure 1. Kubernetes Architecture

The scheduler is one of the components that the container

orchestration system must provide. As a well-known container

orchestration system, Kubernetes provides a scheduling

component called Kube-scheduler, located in the control plane.

The Kube scheduler works in two steps [14]:

• Filtering: This step finds nodes that can meet the resource

requirements of the pods' request. For instance, the

scheduler will filter all available nodes to see if resources

are available according to the pods' minimum

requirements.

• Scoring: This step ranks nodes that pass the filtering step.

2) Stable Matching: The basic concept of stable one-to-one

matching by Gale-Shapley or SMP. The core of SMP is the

matching group between n men and n women, where any

matched partner has no desire to switch to another partner. In

other words, no pair that is better than the existing one exists

called a blocking pair. This is the basic concept of the stable

matching problem proposed by Gale-Shapley [15]. In Figure 2,

a man in m1 has options of woman preference order (𝑤1, 𝑤2, 𝑤3,

𝑤4) where the preference order is based on the ranking order (1,

2, 3, 4), which means that the man 𝑚1 likes 𝑤1 the most, then

𝑤2, 𝑤3, and 𝑤4 as the last options. The SMP algorithm matches

n-man and n-woman, considered the most stable. If a blocking

pair is found, it must be eliminated to achieve stability in the

group match. The SMP concept is widely used to solve various

economic problems. Another popular stable matching problem

is the HR problem [4], a many-to-one model used to solve the

placement for internship medical students (residents) in

hospitals.

Figure 2. Illustration of SMP

C. Problem analysis

In this study, the HR problem case is suitable to use in the

assignment process between containers and servers. Given the

preference from the container 𝑃𝑐 = 𝑃𝑐1, 𝑃𝑐2, 𝑃𝑐3, ..., 𝑃𝑐n and the

server 𝑃𝑠 = 𝑃𝑠1, 𝑃𝑠2, ..., 𝑃𝑠m, we can solve the stable matching

problem using the HR problem model. Matching is stable if

there are no pairs in the following condition: (i) Container c

1 2 3 4

3 2 1 4

1 2 4 3

3 1 4 2

m 1

m 2

m 3

m 4

1 2 3 4

2 1 4 3

2 3 1 4

 1 4 3 2

w 1

w 2

w 3

w 4

Rank Node Node Rank

Pair
Edge) (

Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.8 No.2 July 2023, P-ISSN : 2502-3470, E-ISSN : 2581-0367

140

DOI: http://dx.doi.org/10.25139/inform.v8i2.6220

prefers server s over the matched pairs, (ii) Server s chooses to

add container c and remove the matched container. Several

improvements to the algorithm were suggested to be suitable

and implementable in many case studies. In the case of SMP,

we used deterministic matching, where the preferences of each

pair were predefined.

D. System design

Figure 3 shows our proposed system, which is a

modification of the original architecture of Kubernetes.

Compared with the original architecture shown in Figure 1, the

proposed system is modified by adding two components to the

master node or control plane: the reschedule controller and

matching scheduler. Kubernetes was built based on the Go

programming language. Kubernetes client libraries are also

available in various programming languages. In this study, we

develop our proposed scheduler using Python. In the worker

node part, we activate liveness probes for each pod to monitor

each running pod's health condition. The step for our proposed

method is as follows:

• Reschedule the controller to monitor the health condition of

each container. If the unhealthy container is found under the

threshold, then initiate rescheduling,

• Matching Scheduler performs the stable matching method

based on the trigger of the rescheduled controller.

In contrast, the preferences are dynamic in the real case, so

finding a stable partner is difficult. One of the proposed

concepts for this case is using a probabilistic approach. The

concepts presented by [16] about probabilistic matching use a

probabilistic approach to rematch the matched pairs.

1) Reschedule Controller: The dynamic situation in

Kubernetes' clusters is challenging to find stability using the

Gale-Shapley algorithm. Finding a stable pair in dynamic

situations when referring to the Gale-Shapley stability concept

is difficult. For example, we use CPU and memory resource

usage to specify the preference orders for each pair. In dynamic

situations, the order of preference in the cluster will always

change because the resource request is changed dynamically.

Therefore, the process of finding a stable pair will continue

when a change in resource request occurs. Finding stable pairs

in this dynamic situation is difficult because blocking pairs may

occur frequently. To solve these dynamic situations, we offer a

rescheduled controller to control the stable matching process in

dynamic situations. Therefore, the stable matching process

does not run continuously. Reschedule controller is a service

that determines whether a running pod needs to reschedule.

This service works by periodically observing a pod's activity

and health condition. As shown in Figure 3, we activate the

liveness probes for every deployed pod in a cluster. The

liveness probes are features Kubernetes provides to detect a

broken state of pods. For instance, Kubernetes uses liveness

probes to decide when to restart a container inside the pod [17].

In this study, the rescheduled controller uses the liveness probes

to decide whether or not the Kubernetes cluster needs to be

rescheduled. Figure 4 shows how the rescheduled controller

works. The liveness probes periodically check each running

pod's health condition in a cluster; when the liveness probes

find that the service in a container is unable to serve the requests,

the liveness probes will mark this as an unhealthy pod event

and send the report to the event logger. The rescheduled

controller periodically calculates the probability of pod

Figure 3. The Proposed Scheduler System on Kubernetes

Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.8 No.2 July 2023, P-ISSN : 2502-3470, E-ISSN : 2581-0367

141

DOI: http://dx.doi.org/10.25139/inform.v8i2.6220

happiness based on the number of unhealthy events for each

pod. The rescheduled controller periodically checks the

happiness probability Pr for every deployed pod and compares

it with the user-defined minimum probability threshold. When

the Pr is less than the threshold, the reschedule controller will

initiate the reschedule in a cluster, and the next process will be

handover to a matching scheduler. This reschedule-controller

allows the user to determine the desired threshold. In the

evaluation chapter, we will discuss the impact of the threshold

on applications' QoS.

Figure 4. Reschedule controller.

2) Matching Scheduler: The scheduler is one of the

Kubernetes control plane's main components responsible for

assigning a newly deployed pod to available proper nodes.

Kubernetes also comes with a default scheduler called the Kube

scheduler. This study proposes a scheduling strategy using a

stable matching problem algorithm for the Kubernetes

container orchestration system, which we call a matching

scheduler. The matching scheduler is a custom scheduler we

developed for assigning the pod to the proper nodes in this

study. Fortunately, Kubernetes provides a feature for the

developer to customize the scheduler component. We develop

our custom pod scheduler based on the many-to-one stable

matching or HR problem, which is also used to solve medical

student assignment problems such as the national resident

matching program (NRMP) [18]. The reschedule controller will

initiate a reschedule for the pod from the previous process in

the reschedule controller when a pod's probability of happiness

is less than the predetermined minimum threshold. The

reschedules initiation process put the pods in a pending state.

The matching scheduler works by monitoring each pending pod

and is responsible for finding suitable nodes for that pod. The

matching scheduler uses the many-to-one stable matching

algorithm in pod assignment to servers. The algorithm requires

a preference list for each pod and node to find stable matching.

We need historical data from each party to discover the new

preference list for each side, such as CPU and memory usage.

In the next subsection, we will discuss establishing preferences

from the pod to the node and vice versa.

a) Pods to worker nodes' preference

A pod is a place to run a service on the Kubernetes cluster,

and a service naturally needs a place that can meet its

requirements to run the service properly. Therefore, a service

wants a pod to run optimally. To make a pod work optimally,

we need a proper worker node to provide resources according

to the pod's needs. The correct steps to assign a pod on one of

the worker nodes are needed to achieve this goal. We do not

have to assign the pods to the most excellent worker node to

determine the pod's preference order to the worker node [6]. We

simply need to find the closest distance between the worker

node's resources and the pod's resource usage based on the

historical data of the pod. In this case, we use the Euclidean

distance formula to measure the distance. We try to find the

distance using the two-dimensional Euclidean distance from

the memory and CPU usage of the pod to each worker node's

available memory and CPU resource. In this study, we collect

the CPU and memory usage for each pod in the local database.

Assuming that x is the resource capability of the worker node

and y is the number of resources used by the pod, the Euclidean

distance Equation (1).

𝑑(𝑥, 𝑦) = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 (1)

Where the (𝑥1, 𝑦1) variable is the coordinates of one point; the

(𝑥2, 𝑦2) variable is the coordinates of the other point; and the d

variable is the distance between (𝑥1, 𝑦1) and (𝑥2, 𝑦2).

After the distance from each pod to the worker node is

obtained, the next step is to run the sorting to determine the

preference order. To obtain the preference list order, we need to

perform more steps to produce the preference list order, as

shown in Algorithm 1.

Algorithm 1's main iteration is for all pods deployed in the

Kubernetes cluster with the default namespaces. Using the two-

dimensional Euclidean distance formula, the pod will measure

the distance to each worker node. In this case, we use memory

and CPU as the measured resources. After the distance between

the pod and the worker node has been obtained, the next step is

to check whether the worker node's resource is more excellent

D = euclidean(node, pod);
 podRequest > availableNode

Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.8 No.2 July 2023, P-ISSN : 2502-3470, E-ISSN : 2581-0367

142

DOI: http://dx.doi.org/10.25139/inform.v8i2.6220

than the pod's needs. When the worker node's resource is

smaller than the resource expected by the pod, the distance is

marked as a negative value. The next step is obtaining the node

candidates by filtering the negative value of the distance. The

worker node will not be listed on the pod's preference list if the

distance is negative. The last step to define the preference list

is sorting the available candidates of worker nodes in ascending

mode.

b) Worker nodes to Pods Preference

The viewpoint of worker nodes to pods differs from how pods

view worker nodes. While pods determine worker nodes'

preference based on the resource capabilities of a worker node,

worker nodes determine the order of pods from another point

of view by looking at resource efficiency. Several studies have

revealed the relationship between CPU usage and power

consumption. CPU resource usage is linearly related to power

consumption [19–21]. Several studies [6, 19] used the CPU

variable to show power consumption efficiency in computer

devices. This study uses CPU usage as a reference for assigning

worker node preferences to pods. We then use the idle CPU

usage data history as a variable to determine the preference list

order of worker nodes to pods. To determine the priority order,

we use sorting from the CPU usage of the pods. The worker

node's preference order to the pod will prioritize the pod with

the highest resource usage. We prioritize pods with high CPU

utility due to the linear relationship between CPU usage and

power consumption based on reference [20,22], which reveals

that the number of idle conditions in a data center is more

frequent than those at full load.

c) Rescheduling Process

The scheduling process aims to ensure that a pod can acquire

the proper node. Finding an appropriate and stable pair between

pod and node in real conditions is still difficult because the

system cannot find the essential information needed, such as

each pod's resource usage history. The user is also unable to

define the resource requirements of the pod precisely. Improper

pod placement may produce several cluster problems, such as

power inefficiency in the nodes and decreasing QoS in a pod

due to a lack of resources. Based on those situations, a

reschedule or rematch process between pods and nodes may

sometimes need to be performed to obtain a stable pair between

pods and nodes. One technique that can be used for assigning a

pod to the node is using the many-to-one model of the stable

matching algorithm. The algorithm can work optimally when

the preference of each object is a certainty.

More detailed and accurate information corresponds to more

optimal results. Hence, stability can be achieved. However, the

matching problem we are currently discussing is dynamic,

which may cause each object's preferences to fluctuate. For

illustration, the current CPU requirements of a pod could differ

from that of the next hour. With this dynamic preference

situation, achieving a stable pair will be challenging if we use

the stability concept of Gale-Shapley, where no pairs are better

than the current pair. Furthermore, this situation may trigger the

system to perform the matching process continuously and

infinitely.

To avoid the repeated rescheduling process due to the

cluster's dynamic situation, we use a probability approach to

determine when the cluster's rescheduling process occurs.

Figure 4 shows the rescheduled controller flow diagram process,

which produces rescheduled initiation on the cluster. When a

rescheduled controller initiates a rescheduling, Kubernetes

gives a signal to reschedule all pods in the cluster. Afterward,

our matching scheduler starts rescheduling all pods in the

cluster. Figure 5 shows a flow diagram of how our matching

scheduler works. The matching scheduler works based on

triggers from the rescheduled controller. When triggered, the

matching scheduler generates a preference for each pod and

node in the cluster. The next process assigns pods to the node

when a stable matching pair is obtained. The algorithm used to

match the process can be seen in algorithm 2. This algorithm is

based on the algorithm from the NRMP case [18]. We make a

few modifications to adapt to the dynamic situation in the

cluster.

Figure 5. Matching-Scheduler Triggered by The Probability Controller To

Perform The Rescheduling In A Cluster.

In the NRMP algorithm, which attempts to solve the problem

of residents' placement in a hospital, each hospital can

determine the residents' quota at the beginning of the process.

However, in our current case, we cannot define each server's

quota at the beginning of the process because each pod's

resource needs change frequently. It can be seen in algorithm 2;

we make modifications to the algorithm to define each server's

quota to adapt in dynamic conditions, given that the resource

capacity of host is 𝑅𝐻 and maximum resource usage of pod is

𝑀𝑃. To find the quota can be written as 𝑅𝐻 > 𝑀𝑃 + ∑ 𝑀𝑃𝑖𝑛
𝑖=0 ,

where n is the number of matched pods in the host. In this study,

we are using the pod-optimal stable matching.

Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.8 No.2 July 2023, P-ISSN : 2502-3470, E-ISSN : 2581-0367

143

DOI: http://dx.doi.org/10.25139/inform.v8i2.6220

III. RESULT AND DISCUSSION

This section will discuss our experiences with our

scheduling strategy for Kubernetes. In this experiment, we

created four virtual servers that run on the VirtualBox platform.

The four servers were physically located on a single 64-bit

architecture physical server, which had a 12core Intel i7

processor with a speed of 3.4 GHz CPU and 64 GB of DDR-III

RAM. All experiments in this study were performed on this

physical machine, and each virtual server had a different CPU

and memory resource configuration on each server. The four

servers consisted of one master node and three worker nodes.

The main server (physical server) and virtual server were

running Ubuntu 18.04.3 LTS. Table II shows the resource

specification of each node in the cluster.

TABLE II

NODE'S RESOURCE SPECIFICATION

Hostname Processor number Memory
master node 4×VCPUs 12 GB
worker01 12×VCPUs 12 GB
worker02 5×VCPUs 8 GB
worker03 8×VCPUs 16 GB

For the simulation scenario, 15 web applications with

different characteristics were deployed into the Kubernetes

cluster. We built 15 different PHP applications with different

resource usage characteristics into docker images [23]. We

built a simple arithmetic PHP application with various

iterations. Each application has its unique resource usage, even

when it is idle or loaded with traffic.

To determine the effectiveness of our proposed system, we

evaluate our rescheduled controller and matching scheduler

components. We evaluate the rescheduled controller by

applying various thresholds to discover its ability to control the

occurrence of the rescheduled event. To discover the

effectiveness of the matching scheduler, we evaluate the QoS

of the 15 deployed applications. QoS requirements are

technical criteria that define the quality of the system aspects

such as performance, availability, scalability, and serviceability

[24]. In this study, we focus on maintaining the availability

aspect of QoS, measuring how often a system's resources and

services are accessible to end users. We used Vegeta [25] as a

load-test tool to measure the system's availability. We

performed the load test on the application simultaneously using

various load rates. The number of requests an application

receives in one second is called its load rate. The application

we evaluated is a web application that utilizes the standard

configuration of the Apache2 server. As a result, we decided to

set our maximum load rate at 150 to avoid any potentially

deceptive and unhealthy occurrences that could have been

generated by Apache2 itself rather than a lack of resources. Our

current stable matching algorithm is pod optimal; thus, we did

not evaluate the power consumption of the servers.

A. Rescheduling Evaluation

This research evaluated the rescheduled controller module

we developed and attempted to prove the effectiveness of the

happiness probability threshold on the scheduler's performance.

In this step, we tried to compare three values of the happiness

probability threshold to discover the number of reschedules in

the system needed to achieve stable matching. The happiness

probability threshold was used to control the intensity of the

rescheduling process. We evaluated the rescheduling process

using three different threshold levels in this scenario. For each

Algorithm 2: Pod optimal many-to-one Stable matching with dynamic quota

 hostRemainingResource > sum(PodMaxResourceUsage in hostMatch)

unlock(podMatch)

Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.8 No.2 July 2023, P-ISSN : 2502-3470, E-ISSN : 2581-0367

144

DOI: http://dx.doi.org/10.25139/inform.v8i2.6220

simulation, we gradually performed load tests for 15 deployed

pods using Vegeta with various load rates. Each deployed pod

was loaded with various load rates simultaneously. We

evaluated how many reschedules were required to achieve a

stable match for each rate.

As shown in Table 3, a threshold of 0.7 requires three total

reschedules to achieve a stable pair at the 150 load rate, whereas

the simulation with 0.8 and 0.9 thresholds requires 13 times

rescheduling to achieve a stable match condition. The

simulations show that the rescheduling process repeatedly

occurred during attempts to achieve stability with a high load

rate because more resources were needed when the pod

attempted to serve numerous requests. Meanwhile, the

availability of resources on the worker node was approaching

the limit. The trade-off concept is needed to achieve stability

and better QoS by removing multiple pods from the cluster.

However, when we set the probability threshold to 0.7, the

number of reschedules that occurred was not as high as those at

thresholds of 0.8 and 0.9, and no pods were dumped for the

threshold of 0.7. In the next subsection, we evaluate the

performance of the pods based on the new pair generated by the

reschedules of each threshold.

B. Evaluation of application availability

This research aims to improve the availability of applications

in a cluster using a rescheduling strategy. To demonstrate the

effectiveness of our strategy, we performed load tests using

Vegeta on the 15 deployed applications. We compared

application availability when using the scheduling composition

using Kubernetes with three variations of the scheduling

composition after rescheduling.

TABLE II

RESCHEDULE PERFORMACE

Vegeta

Load rate

(rate/s)

Probability Threshold

0.7

0.8

0.9

Rematch # of rematch dumped pods Rematch # of rematch dumped pods Rematch # of rematch dumped pods

50 NO 0 - NO 0 0 NO 0 -

60 NO 0 - NO 0 0 NO 0 -

70 NO 0 - NO 0 0 NO 0 -

80 NO 0 - NO 0 0 YES 1 0

90 NO 0 - YES 1 0 YES 1 0

100 NO 0 - NO 0 - NO 0 -

110 YES 1 0 YES 2 0 YES 1 0

120 YES 1 0 NO 0 - NO 0 -

130 YES 1 0 YES 9 4 YES 8 5

140 NO 0 - YES 1 6 YES 2 5

150 NO 0 - NO 0 - NO 0 -

However, Table III shows that a trade-off process occurs by

removing some pods from the cluster during the load test

process with a rate of 130/s. Therefore, we use the rescheduling

results of each threshold variation obtained during the load test

with the 120/s rate in this experiment. This research

simultaneously performed a load test for 5 minutes on each load

rate variant for the 15 applications.

Figure 6 shows the average success rate of these 15

applications during the load test. The experimental results show

that rescheduling positively impacts the application's

availability. The average success rate of applications after

rescheduling was higher than the success rate during the initial

scheduling with Kubernetes. Figure 6 also shows the impact of

the threshold in the rescheduled controller on the application's

availability. The chart shows that the average success rate of

applications for the threshold of 0.9 outperforms the other

thresholds on average.

In contrast, the availability of the applications for the

threshold of 0.7 is always below the other thresholds at a load

rate above 70/s. A high threshold corresponds to better

availability of the application. However, the users need to

consider the trade-off effects when defining a high threshold,

such as some pods being removed from the cluster to achieve a

better QoS.

Figure 6. Comparison Of Applications Success Rate For Each Schedule

Figure 7 compares CPU and memory usage in each

scheduling composition. The average resource usage after

rescheduling is higher than that of Kubernetes scheduling. This

0

20

40

60

80

100

50 60 70 80 90 100 110 120 130 140 150
Load Rate

Average Success Rate

Kubernetes Threshold 0.7 Threshold 0.8 Threshold 0.9

Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.8 No.2 July 2023, P-ISSN : 2502-3470, E-ISSN : 2581-0367

145

DOI: http://dx.doi.org/10.25139/inform.v8i2.6220

situation explains why the application availability while using

Kubernetes scheduling in Figure 6 is lower than after

rescheduling.

Figure 7. Pods Resource Usage

This occurred because the server could not satisfy the pods'

needs when the applications requested more resources.

Whereas Figure 8 shows the average percentage of the total

resource usage of each server. When Kubernetes scheduling

was applied, worker02, which has the smallest CPU resource

specification on the cluster, used a very high average CPU,

close to 100%. Worker01 and worker03, which had more CPU

resources than worker02, had many unused resources. This

situation shows the misplacement during scheduling with

Kubernetes due to a lack of information about the

characteristics of the application in the container. The

applications can achieve better availability when rescheduling

is performed on the cluster. In this experiment, the memory

usage in the application did not considerably affect the

application's availability because a large amount of memory

resources remained.

Figure 8. Server Resource Usage

IV. CONCLUSION

Rescheduling is one of the strategies that can be used to

increase the QoS of an application in a container cluster. Using

a many-to-one stable matching algorithm, we can perform the

scheduling process between containers and servers. The

probability technique can be used to manage the frequency of

the rescheduling process in a cluster, which is necessary to

apply a stable matching algorithm to an environment with a

dynamic cluster. The experiment results demonstrate that our

rescheduling strategy improved the availability of the

application. A high value of the happiness probability threshold

corresponds to better QoS achieved. However, applying the

trade-off concept to clusters, such as removing multiple

containers from clusters when the server capacity exceeds the

limit, is sometimes necessary to obtain a better QoS.

Several issues can be improved in this study, such as how to

manage the trade-off effects. Our next study will enhance our

findings by evaluating a trade-off effect to achieve a better QoS.

Another issue that needs to resolve is related to energy saving

in the cluster.

REFERENCES

[1] Z. Zhong and R. Buyya, "A cost-efficient container orchestration strategy

in kubernetes-based cloud computing infrastructures with heterogeneous

resources," ACM Transactions on Internet Technology (TOIT), vol.20,

no.2, pp.1–24, 2020.
[2] A. Alimudin and Y. Ishida, "Service-based container deployment on

kubernetes using stable marriage problem," Proceedings of the 2020 The

0

20

40

60
80

100

worker01 worker02 worker03
Server name

CPU Usage

Kubernetes Threshold 0.7 Threshold 0.8 Threshold 0.9

0
10
20
30
40
50
60
70
80
90

100

worker01 worker02 worker03
Server name

Memory Usage

Kubernetes Threshold 0.7 Threshold 0.8 Threshold 0.9

Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi

 Vol.8 No.2 July 2023, P-ISSN : 2502-3470, E-ISSN : 2581-0367

146

DOI: http://dx.doi.org/10.25139/inform.v8i2.6220

6th International Conference on Frontiers of Educational Technologies,

pp.164–167, 2020.
[3] A. Alimudin and Y. Ishida, "Dynamic assignment based on a probabilistic

matching: Application to server-container assignment," Procedia

Computer Science, vol.176, pp.3863–3872, 2020.
[4] D. Gusfield and R.W. Irving, The stable marriage problem: structure and

algorithms, MIT press, 1989.
[5] C. Kaewkasi and K. Chuenmuneewong, "Improvement of container

scheduling for docker using ant colony optimization," 2017 9th

international conference on knowledge and smart technology (KST),

pp.254–259, IEEE, 2017.
[6] F. Chen, X. Zhou, and C. Shi, "The container deployment strategy based

on stable matching," 2019 IEEE 4th International Conference on Cloud

Computing and Big Data Analysis (ICCCBDA), pp.215– 221, IEEE,

2019.
[7] C. Cérin, T. Menouer, W. Saad, and W.B. Abdallah, "A new docker

swarm scheduling strategy," 2017 IEEE 7th international symposium on

cloud and service computing (SC2), pp.112–117, IEEE, 2017.
[8] T. Menouer, "Kcss: Kubernetes container scheduling strategy," The

Journal of Supercomputing, pp.1–27, 2020.
[9] M. Rodriguez and R. Buyya, "Container orchestration with

costefficientautoscalingincloudcomputingenvironments," inHandbook of

research on multimedia cyber security, pp.190–213, IGI Global, 2020.
[10] H. Xu and B. Li, "Egalitarian stable matching for vm migration in cloud

computing," 2011 IEEE Conference on Computer Communications

Workshops (INFOCOM WKSHPS), pp.631–636, IEEE, 2011.
[11] B. Di Martino, G. Cretella, and A. Esposito, "Advances in applications

portability and services interoperability among multiple clouds," IEEE

Cloud Computing, vol.2, no.2, pp.22–28, 2015.
[12] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J.

Wilkes, "Large-scale cluster management at google with borg,"

Proceedings of the Tenth European Conference on Computer Systems,

pp.1–17, 2015.

[13] Kubernetes, "Kubernetes components." https://kubernetes.io/docs/

concepts/overview/components. Accessed: 2021-02-21.
[14] Kubernetes, "Kubernetes scheduler." https://kubernetes.io/docs/

concepts/scheduling-eviction/kube-scheduler/. Accessed: 2021-0221.
[15] D. Gale and L.S. Shapley, "College admissions and the stability of

marriage," The American Mathematical Monthly, vol.69, no.1, pp.9–15,

1962.
[16] Y. Ishida and K.I. Tanabe, "Network rewiring in self-repairing network:

from node repair to link rewire," 17th International Symposium on

Artificial Life and Robotics, 2012.
[17] Kubernetes, "Configure liveness, readiness and startup probes."

https://kubernetes.io/docs/tasks/configure-pod-

container/configureliveness-readiness-startup-probes/. Accessed: 2021-

02-21.
[18] NRMP, "The match, national resident matching program." https:

//www.nrmp.org/. Accessed: 2021-02-21.
[19] A. Kella and G. Belalem, "Vm live migration algorithm based on stable

matching model to improve energy consumption and quality of service.,"

CLOSER, pp.118–128, 2014.
[20] X. Fan, W.D. Weber, and L.A. Barroso, "Power provisioning for a

warehouse-sized computer," ACM SIGARCH computer architecture

news, vol.35, no.2, pp.13–23, 2007.
[21] D. Kusic, J.O. Kephart, J.E. Hanson, N. Kandasamy, and G. Jiang, "Power

and performance management of virtualized computing environments via

lookahead control," Cluster computing, vol.12, no.1, pp.1–15, 2009.
[22] R. Sinha, N. Purohit, and H. Diwanji, "Energy efficient dynamic

integration of thresholds for migration at cloud data centers," IJCA

Special Issue on Communication and Networks, vol.1, pp.44–49, 2011.
[23] dockerhub, "Php arithmetic docker image." https://hub.docker.com/

r/alioke/hpafix.
[24] Oracle, "Quality of service requirements." https://docs.oracle.com/

cd/E19636-01/819-2326/gaxqg/index.html. Accessed: 2021-02-21. [25]

Github, "Vegeta load test." https://github.com/tsenart/vegeta.

This is an open access article under the CC–BY-SA license.

https://kubernetes.io/docs/concepts/overview/components
https://kubernetes.io/docs/concepts/overview/components
https://kubernetes.io/docs/concepts/overview/components
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/concepts/scheduling-eviction/kube-scheduler/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://www.nrmp.org/
https://www.nrmp.org/
https://www.nrmp.org/
https://hub.docker.com/r/alioke/hpafix
https://hub.docker.com/r/alioke/hpafix
https://hub.docker.com/r/alioke/hpafix
https://docs.oracle.com/cd/E19636-01/819-2326/gaxqg/index.html
https://docs.oracle.com/cd/E19636-01/819-2326/gaxqg/index.html
https://docs.oracle.com/cd/E19636-01/819-2326/gaxqg/index.html
https://github.com/tsenart/vegeta
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

