
Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi 

  Vol.10 No.1 January 2025, P-ISSN : 2502-3470, E-ISSN : 2581-0367 

 

45 

DOI : https://doi.org/10.25139/inform.v10i1.9310 
 

Skin Lesion Classification Using YOLOv11 on the HAM10000 Dataset 
Islam Cahya Wicaksana1, Ricardus Anggi Pramunendar2, Galuh Wilujeng Saraswati3, Gustina Alfa Trisnapradika4 

 1,2,3,4Informatics Department, Universitas Dian Nuswantoro, Indonesia 
1wicakislamcahya@gmail.com(*) 

2,3,4[ricardus.anggi, galuhwilujengs, gustina.alfa]@dsn.dinus.ac.id 

 

Received: 2024-12-02; Accepted: 2025-01-13; Published: 2025-01-21 

 
Abstract— Skin cancer represents a significant global health concern due to its high mortality rate. Early and accurate detection is crucial but 
often hindered by the limitations of traditional diagnostic methods. This research applies the YOLOv11 algorithm for skin lesion classification 

directly from dermoscopic images using the HAM10000 dataset (10,015 images, 7 skin lesion classes). The primary objectives are to evaluate 

YOLOv11's performance in multi-class classification and assess the impact of data augmentation (rotation, horizontal flipping) in addressing 

class imbalance. The methodology involved two experiments: training YOLOv11 on the original and augmented datasets and comparing its 
performance with multi-stage architectures (VGG19 and ResNet50). Five pre-trained YOLOv11 models were tested using accuracy, precision, 

recall, and F1-score metrics. Results showed the YOLOv11x-cls model trained on the augmented dataset achieved the best performance among 

YOLOv11 models (accuracy 84.74%, precision 83.94%, recall 84.74%, F1-score 84.06%). However, VGG19 recorded the highest accuracy 

(89.68%). Data augmentation effectively improved model performance by mitigating class imbalance. This study also indicates that multi-stage 
architectures perform better in skin lesion classification tasks than single-stage architectures. The key contributions of this research are: (1) a 

comprehensive performance comparison of YOLOv11 with VGG19 and ResNet50 for skin lesion classification and (2) empirical validation of 

data augmentation's effectiveness in improving model performance. This study demonstrates that YOLOv11 can achieve competitive 

performance in skin lesion classification despite not surpassing the performance of multi-stage architectures. 
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I. INTRODUCTION 

Skin lesions, including skin cancer, are among the most 

common types of cancer globally [1], thus highlighting the 

widespread distribution of skin lesions across multiple 

continents. Its primary cause is exposure to ultraviolet (UV) 

radiation from sunlight, which can damage the DNA of skin 

cells and trigger abnormal cell growth [2]. Additional risk 

factors include a history of sunburn and the use of tanning beds, 

which emit artificial UV radiation that significantly increases 

the risk of melanoma, a form of skin lesion [3], [4], [5]. These 

findings suggest that ultraviolet (UV) radiation exposure, 

including both solar and artificial sources like tanning beds, 

contributes to the development of skin cancer and that tanning 

beds constitute a significant source of this risk. 

Globally, about 3 million new cases of non-melanoma skin 

cancer are reported annually [6]. Melanoma, a more aggressive 

type of skin cancer, accounts for around 125,000 new cases 

annually worldwide [7]. The known cancer types in skin lesions 

are melanocyte and non-melanocyte. Melanocytic lesions 

include melanoma (mel) and melanocytic nevi (nv). In contrast, 

non-melanocytic skin diseases include benign keratosis-like 

lesions (bkl), basal cell carcinoma (bcc), actinic keratosis 

(akiec), vascular lesions (vasc), and dermatofibroma (df). [8]. 

Among these, melanoma is the most deadly, with a survival rate 

of only 15% [9]. 

Dermoscopy is a diagnostic approach that does not require 

invasive procedures, enabling close examination of skin surface 

and subsurface structures [10]. While it is widely used to 

identify skin cancer symptoms, its effectiveness heavily 

depends on the dermatologist's experience, making it prone to 

subjectivity and diagnostic inaccuracies [11]. This underscores 

the necessity of advanced technologies, such as deep learning, 

to aid specialists in improving diagnostic accuracy. Recent 

innovations in deep learning have greatly enhanced the ability 

to diagnose skin cancer, particularly by classifying 

dermoscopic images of skin lesions. These methods offer 

improved accuracy, speed, and consistency compared to 

traditional diagnostic approaches.  

The HAM10000 dataset is a well-known dataset for skin 

lesion classification, containing 10,015 dermoscopic images 

covering seven skin lesions, including actinic keratosis, 

vascular lesions, melanocytic nevi, seborrheic keratosis, basal 

cell carcinoma, dermatofibroma, and melanoma. The 

HAM10000 dataset is frequently used in studies due to its 

diversity, expert annotations, and accessibility, making it a 

standard benchmark for developing and evaluating machine 

learning models in dermatology research. 

While many studies use HAM10000 and deep learning for 

skin lesion classification, the performance of single-stage 

CNNs, especially YOLOv11, is underexplored. Single-stage 

architectures like YOLOv11, with integrated detection and 

classification, offer the potential for detailed image processing. 

This study examines the viability of YOLOv11 in skin lesion 

classification by comparing it to multi-stage models, VGG19 

and ResNet50, known for hierarchical feature extraction. We 

also analyze the impact of data augmentation on model 

performance, particularly in addressing class imbalance. 

Several studies have utilized the HAM10000 dataset for skin 

lesion classification and detection. For instance, Adebiyi A 

conducted research using the multi-modal ALBEF architecture 

to classify seven classes of skin lesions, achieving 94.11% 
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accuracy [12]. Another study by Ingle Y employed the VGG16 

architecture for the same classification task and reported 88.83% 

accuracy [13]. Additionally, a different study focused on a 

binary classification task—detecting benign and malignant 

lesions—using the YOLOv8 algorithm, which achieved 

precision and recall values of 78.2% and 81.6% [14].  

In this research, we comprehensively explored the 

performance of YOLOv11 as a single-stage architecture for 

skin lesion classification on the HAM10000 dataset. This 

research investigated the extent to which YOLOv11 could 

achieve accurate and effective classification results in this task 

compared to multi-stage models such as VGG19 and ResNet50, 

known for their hierarchical feature extraction capabilities. By 

comparing these three architectures, this study aimed to provide 

in-depth insights into their performance in skin lesion 

classification and the effectiveness of data augmentation in 

addressing class imbalance. 

The main contribution of this study is a comprehensive 

comparison of YOLOv11's performance against VGG19 and 

ResNet50 for skin lesion classification using the HAM10000 

dataset, with particular emphasis on analyzing the impact of 

data augmentation on the performance of these models. 

II. RESEARCH METHODOLOGY 

This study implements YOLOv11, VGG19, and ResNet50 

models, utilizing the HAM10000 dataset to classify various 

skin lesion types. The methodology encompassed several 

stages, such as data collection, image preprocessing involving 

segmentation, splitting dataset, resizing and augmentation, 

CNN modelling, and model performance evaluation, as 

depicted in Fig.1. 

 
Fig.1. Flowchart Method 

A. Data Collecting 

The dataset used in this research is the HAM10000 dataset. 

This dataset represents 7 types of skin lesions and contains 

10,015 dermatoscopic images. Dermatology experts annotated 

the dataset. The classes included are vascular lesions (vasc), 

actinic keratoses (akiec), melanocytic nevi (nv), benign 

keratosis-like lesions (bkl), basal cell carcinoma (bcc), 

dermatofibroma (df), and melanoma (mel). The distribution of 

images across these classes is visualized in Fig.2.  

 

 
Fig.2. Class Distribution 

 

The dataset contains a different number of images for each 

class. Dermatofibroma (df) has the smallest representation in 

the dataset with 115 images, followed by vascular lesions (vasc) 

with 142 images, actinic keratoses (akiec) with 327 images, and 

basal cell carcinoma (bcc) with 514 images. Benign keratosis-

like lesions (bkl) are represented by 1,099 images, while 

melanoma (mel) accounts for 1,113. Melanocytic nevi (nv) has 

the largest representation, containing 6,705 images. This 

distribution highlights a significant class imbalance within the 

dataset.  

The imbalance in class distribution within the dataset often 

leads to misclassification of minority classes, which are more 

likely to be incorrectly predicted than majority classes [15]. To 

solve this issue, this study conducts two distinct experiments. 

The first involves training the model using the original dataset 

without augmentation, and the second utilizes an augmented 

dataset to mitigate the effects of class imbalance. 

B. Data Preprocessing 

Before model training, the dataset underwent several 

preprocessing steps. Firstly, to focus on the skin lesion and 

eliminate irrelevant information such as surrounding skin, hair, 

and other noise, the provided binary masks in the HAM10000 

dataset were used to segment each image. These masks are a 

binary representation, where pixels corresponding to the lesion 

are labelled 1, while the rest are labelled 0. Each image was 

segmented using the binary mask by multiplying it with its 

mask. Then, each segmented image was cropped automatically 

to focus on the lesional area using the bounding box 

information generated from the segmented non-black regions. 

Thirdly, all images were resized to 224x224 pixels for the 

VGG19 and ResNet50 models and 640x640 pixels for the 

YOLOv11 model. Then, the dataset was divided into three 

subsets using a stratified split, with a composition of 70% 

allocated for training, 20% for validation, and 10% for testing. 

Following this split, data augmentation techniques were 

exclusively applied to the training set to address the class 
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imbalance and enhance the generalization ability of the models. 

The augmentation process included various transformations 

designed to increase the number of images in underrepresented 

classes, thereby minimizing class imbalance in the dataset [16]. 

Specifically, the augmentation techniques applied were rotation 

by -15 and 15 degrees vertical and horizontal flipping. The 

Nevus Melanocytic (nv) class, the majority class with 6705 

images, was used as a standard for balancing other classes. This 

approach ensured no data or important information from the 

majority class was removed or reduced. 

The primary objective was to enhance the representation of 

minority classes while retaining essential features of dominant 

classes, as reducing the number of images in majority classes 

could lead to the loss of critical information [17]. By adding 

this approach to the dataset, it was anticipated that the model's 

capacity to generalize across various types of lesions would be 

greatly improved, which would result in classification findings 

that were more reliable and balanced. 

C. CNN Modelling 

1)  YOLOv11: In this research, we explored five different 

variants of the YOLOv11 algorithm to perform classification 

on seven skin lesion types from the HAM10000 dataset, such 

as YOLOv11n-cls, YOLOv11s-cls, YOLOv11m-cls, 

YOLOv11l-cls, and YOLOv11x-cls. These models, initialized 

with ImageNet pre-trained weights, vary in size, accuracy, and 

computational complexity. The lighter models, such as 

YOLOv11n-cls, are designed for faster inference with minimal 

computational requirements, while the larger models, like 

YOLOv11x-cls, prioritize accuracy with higher resource 

demands. YOLOv11, introduced in September 2024, is the 

most recent version in the YOLO series of models. Notable 

architectural advancements in YOLOv11 include the 

integration of the SPPF module to capture multi-scale 

information and the incorporation of the C2PSA block to 

improve focus on important regions within an image [16], 

which are modifications from the YOLOv8 design. YOLOv11 

is a single-stage model designed for simultaneous object 

detection and classification. It comprises three main parts: the 

backbone for feature extraction, the Neck for feature fusion, 

and the Head for detection and classification, the YOLOv11 

architecture, as illustrated in Fig.3.

 

 
Fig.3. YOLOv11 Architecture

The backbone is responsible for extracting meaningful features 

from the input image. The input image (640x640x3) is passed 

through several convolutional layers and C3k2 blocks to down-

sample the image and extract meaningful hierarchical features 

[17]. The feature map's spatial dimensions are progressively 

reduced, and the number of channels increases. The backbone 

consists of convolutional layers (Conv) and C3k2 blocks, 

progressively reducing the feature maps' spatial dimensions and 

increasing their depth. The C3k2 blocks are a crucial part of the 

backbone feature learning process, as they use two 3x3 

convolution filters instead of one large filter to reduce the 

computational burden while learning highly detailed features. 

The backbone output is a set of multi-scale feature maps with 

different resolutions that are later used in the neck section. The 
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operation of the C3k2 block is mathematically seen in Equation 

(1). Where 𝐹 denotes the input feature map passed through the 

block while 𝐶𝑜𝑛𝑣3𝑥3  represents the application of a 

convolutional layer with a kernel size of 3x3 to half of the input 

feature map. The operation 𝐶𝑜𝑛𝑐𝑎𝑡 refers to concatenating the 

processed and unprocessed portions of the feature map, 

resulting in an output feature map. 𝐹𝐶3𝑘2. This structure reduces 

computational redundancy and enhances feature representation 

efficiency. 

𝐹𝐶3𝑘2 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝐹, 𝐶𝑜𝑛𝑣3𝑥3(𝐹)) (1) 

The neck combines the feature maps from the backbone at 

different scales using up-sampling, concatenation, and 

additional convolutional layers. The Spatial Pyramid Pooling 

Fast (SPPF) module combines the multiple scales features of 

the backbone at a fixed scale. It allows the architecture to be 

trained with many objects of different sizes in mind [18]. The 

mathematical representation of the SPPF module is given in 

Equation (2). Where 𝐹  mean is the input feature map, and 

𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑘  applies for operations with kernel sizes of 𝑘 = 5 

and 𝑘 = 3. 

𝐹𝑆𝑃𝑃𝐹 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑘=5, 𝑀𝑎𝑥𝑃𝑜𝑜𝑙𝑘=3(𝐹), 𝐹) (2) 

These pooling operations capture spatial information at 

different scales. The concatenation of the pooled results with 

the original feature map creates the final output 𝐹𝑆𝑃𝑃𝐹 feature 

map, which contains multi-scale contextual information. Then, 

the C2PSA (Cross Stage Partial with Spatial Attention) 

Block enables the model to use information from various scales 

to focus on the most important regions of the image during 

feature fusion [16]. The operation of the C2PSA block is 

expressed in Equation (3). Where 𝑋 represents the input feature 

map. The block splits 𝑋 into two pathways,  𝑋1 and 𝑋2. Each is 

processed through distinct convolutional or attention 

mechanisms. The concatenation of these pathways, 

𝐶𝑜𝑛𝑐𝑎𝑡(𝑋1, 𝑋2)  is passed through an attention mechanism. 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛, which assigns weights to regions of importance. 

This enables the model to focus on critical areas in the feature 

map, resulting in an output that emphasizes the most relevant 

regions for object detection. 
 

𝐶2𝑃𝑆𝐴 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐶𝑜𝑛𝑐𝑎𝑡(𝑋1, 𝑋2)) (3) 

 

By combining the C3k2 blocks, the SPPF modules, and the 

C2PSA blocks, YOLOv11 achieves an improved balance of 

computational efficiency and accuracy [19]. These 

enhancements enable YOLOv11 to make it an ideal solution for 

classifying skin lesions in the HAM10000 dataset. 

2)  VGG19: VGG19 is a classical multi-stage deep 

convolutional neural network (CNN) architecture renowned for 

its depth and the use of small 3x3 convolutional filters [20]. It 

is a feedforward architecture where the input data flows 

sequentially to the output without loops or skip connections. 

The main parts of VGG19 architecture include convolutional 

layers, pooling layers, and fully connected layers, each playing 

a different role in the feature extraction and classification 

process. The term multi-stage in this context refers to the 

architecture processes the input through several stages of 

convolution and pooling before the classification layer. The 

VGG19 architecture used in this research is shown in Fig.4. 

 
Fig.3. VGG19 Architecture 

The VGG19 architecture used in this research consists of the 

VGG19 feature extraction network with initial layers (a max-

pooling layer follows 16 convolutional layers arranged into 

blocks, each convolutional block) frozen. The feature maps 

from the frozen feature extraction layers are passed into an 

Adaptive Average Pooling Layer that downscales them. Then a 

fully connected layer is used to perform the final classification. 

These fully connected layers perform the final classification 

using the features extracted by previous layers. The final fully 

connected layer has an output size corresponding to the number 

of classes in the dataset. This research used a VGG19 model 

pre-trained on the ImageNet dataset. The initial layers of 

VGG19 were frozen to maintain the learned feature 

representations and decrease training time. This step was 

followed by training the fully connected layers to fit the model 

for the skin lesion classification task on the HAM10000 dataset. 

3)  ResNet50: ResNet50 is a powerful multi-stage deep 

convolutional neural network (CNN) architecture that employs 

shortcut connections, also known as skip connections, to 

facilitate the training of very deep neural networks and 

effectively address the vanishing gradient problem [21]. The 

architecture is based on residual blocks, the core components 

of ResNet50. In this research, ResNet50 was used with pre-

trained weights on the ImageNet dataset. The ResNet50 

architecture used in this research is presented in Fig.5. The 

ResNet50 architecture used in this research starts with an input 

layer that receives images of a specific dimension (224x224x3) 

followed by a convolutional layer that extracts simple initial 
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features. The feature maps are then passed through multiple 

residual blocks organized in multiple stages. There are two 

types of residual blocks: the identity block, which is applied 

when input and output have the same dimensions. 

 
Fig.4. ResNet50 Architecture 

 
It contains three convolutional layers within the block and a 

skip connection that adds the input of the block to the output of 

those convolutional layers. A convolutional block is applied 

when input and output have different dimensions. It contains 

three convolutional layers within the block and a convolutional 

layer on the skip connection that adjusts the input size. The skip 

connections enable the model to learn the residual mappings, 

preventing the vanishing gradients. A global Adaptive Average 

Pooling Layer is at the end of the feature extraction network, 

which reduces the feature map dimensions before flattening. 

This flattened feature is then passed into fully connected layers 

that perform classification. This research used a ResNet50 

model pre-trained on the ImageNet dataset. To adapt this 

architecture to our specific task, the initial convolutional layers 

of ResNet50, which perform the feature extraction task, were 

frozen to maintain the pre-trained features. After that, the newly 

added fully connected layers for classifying seven different skin 

lesion classes in the HAM10000 dataset were fine-tuned. This 

transfer learning strategy allowed for more efficient training 

and boosted performance. Moreover, the ResNet50 and 

VGG19 models have different design principles, with VGG19 

focusing on deep stacking of convolutional layers and 

ResNet50 emphasizing efficient training of deep neural 

networks using skip connections. 

4)  Hyperparameter Tuning: Optimization for the 

performance of the models, hyperparameter tuning was 

performed. The hyperparameter values for all models 

(YOLOv11, VGG19, and ResNet50) are summarized in Table 

I. 

TABLE I 

TEST DATASET CLASS DISTRIBUTION 

Hyperparameter Values 

Optimizer AdamW 

Initial Learning Rate 0.01, 0.001, 0.0001 

Batch Size 32 

Epochs 100 

All models were trained using the AdamW optimizer, known 

for its adaptive learning rate capabilities and effectiveness in 

training deep neural networks. We explored three initial 

learning rates, such as 0.01, 0.001, and 0.0001. These values 

were selected based on initial experimentation and prior 

literature, where smaller learning rates have proven useful on 

tasks requiring fine-tuning, and larger learning rates are 

beneficial for the initial training. A batch size of 32 was used 

across all models in this research to fit within the available 

computing resources, where we utilized two Nvidia T4 GPUs 

with 15GB of memory each. The number of epochs was fixed 

at 100, based on initial observations on the convergence of the 

models. This configuration was carefully chosen to balance 

computational resources and optimal model performance. 

D. Evaluation 

This section describes the evaluation metrics used to assess 

the performance of all the models (YOLOv11, VGG19, and 

ResNet50) on the skin lesion classification task, using a 

separate testing set different from the training and validation 

sets. We employed precision, recall, F1-score, and accuracy, 

calculated for each class. These class-specific metrics were 

combined using a weighted average approach to obtain the 

overall performance scores. By applying these, the 

performance of each model, trained on both raw and augmented 

datasets, was systematically evaluated. 

1)  Precision is the ratio of true positives to the total number 

of true and false positives, as expressed in Equation (4). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
 (4) 

2)  Recall: The proportion of actual positive cases correctly 

recognized is measured by this metric and is defined in 

Equation (5). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
 (5) 

3)  F1-Score: The F1-score, a metric combining precision and 

recall through their harmonic mean, is defined in Equation (6). 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (6) 

4)  Accuracy: This metric determines the percentage of 

correctly classified samples among the total samples, with its 

definition provided in Equation (7). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 (7) 
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III. RESULT AND DISCUSSION 

This section presents and discusses the results obtained 

from the skin lesion classification experiments using three 

different CNN architectures: YOLOv11, VGG19, and 

ResNet50. The model performance was evaluated on two sets 

of experiments, the first set of results using the original (raw) 

dataset and the second using the augmented dataset. 

A. Data Segmentation Results 

The masks provided in the HAM10000 dataset were used to 

segment each image, focusing on the skin lesion itself and 

eliminating irrelevant information such as surrounding skin, 

hair, and other noise, resulting in better focus on the lesion area. 

Fig.6 presents the sample of this masking and cropping process 

applied to an image taken from a nevus melanocytic class. 

 

Fig.5. Sample of Segmentation Result 

B. Data Augmentation Results 

This research used augmentation approaches to improve the 

representation of minority classes and overcome the 

imbalanced dataset problem. In Fig.7, we see the outcome of 

applying augmentations to a single image that belongs to the 

Melanoma (mel) class. 

 

 
Fig.6. Augmentation Sample on Melanoma 

Table II informs the distribution of train images across 

classes in the original and augmented datasets. The 

augmentation process significantly increased the number of 

train images for minority classes while keeping the nv class 

unchanged. 

TABLE II 

TRAIN SET IMAGE COUNTS AFTER AUGMENTATION 

Class Original Count 
Augmented 

Count 

df 80 400 

akiec 228 1140 

bcc 359 1795 

bkl 769 3845 

vasc 99 495 

mel 779 3895 

nv 4693 4693 

 

C. Models Performance Evaluation 

The capability of all models (YOLOv11, VGG19, and 

ResNet50) was measured using the testing set, which was 

reserved exclusively for testing, ensuring that the reported 

metrics represent the models' ability to generalize on unseen 

data. The results presented for each model were obtained with 

the best configuration found after several experiments using 

three different initial learning rates (0.01, 0.001, and 0.0001), 

and the testing set performance showed that a learning rate of 

0.0001 generally produces the best result for all models. 

Therefore, the performance metrics detailed in the following 

sections were obtained from experiments that exclusively 

employed a learning rate 0.0001. 

1)  Results Trained on the Raw Dataset:  For each model 

that was trained with the raw dataset that is shown in Table III, 

performance measures such as accuracy, precision, recall, and 

F1-score were calculated. 

TABLE III 

PERFORMANCE METRICS TRAINED USING THE RAW DATASET 

Model Accuracy Precision Recall F1-Score 

YOLOv11x-cls 0.6851 0.6849 0.6841 0.6891 

YOLOv11l-cls 0.6743 0.6745 0.6734 0.675 

YOLOv11m-cls 0.6725 0.6702 0.669 0.6517 

YOLOv11s-cls 0.6592 0.6635 0.653 0.6412 

YOLOv11n-cls 0.6491 0.6351 0.6252 0.6305 

VGG19 0.7912 0.7236 0.7391 0.7212 

ResNet50 0.7743 0.7591 0.7743 0.7424 

 

The experiment using the raw dataset showed that the 

YOLOv11x-cls model achieved the best performance among 

the different YOLOv11 variants, with an accuracy of 68.51% 

and an F1-score of 68.91%. While the other YOLOv11 variants 

had slightly inferior results, these findings do indicate the 

potential of the YOLOv11 architecture for classifying skin 

lesions. It is important to note that in this experiment, VGG19 

had the best performance in terms of accuracy (79.12%) and 

F1-score (72.12%), followed by ResNet50 with an accuracy of 

77.43% and F1-score of 74.24%. However, the YOLOv11 

models exhibited relatively low recall, with the highest recall 

value being 68.41%, obtained by the YOLOv11x-cls model. 

Thus, the potential of YOLOv11 for skin lesion classification 

needs further examination, specifically with a more 

comprehensive approach to data augmentation. 

2)  Results Trained on the Augmented Dataset:  In the second 

experiment, the model's performance was evaluated using the 

same test dataset as in the raw dataset experiment, as presented 

in Table IV. 

TABLE IV 

PERFORMANCE METRICS TRAINED USING THE AUGMENTED 

DATASET 

Model Accuracy Precision Recall F1-Score 

YOLOv11x-cls 0.8474 0.8394 0.8474 0.8406 

YOLOv11l-cls 0.8315 0.8236 0.8312 0.8249 

YOLOv11m-cls 0.8112 0.8035 0.8110 0.8047 

YOLOv11s-cls 0.7920 0.7845 0.7920 0.7856 

YOLOv11n-cls 0.7713 0.7639 0.7713 0.7651 

VGG19 0.8968 0.88 0.8965 0.8720 

ResNet50 0.8751 0.8542 0.8751 0.8421 
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The results show a significant improvement in all metrics for 

all models when trained using an augmented dataset. The 

YOLOv11x-cls model exhibited the most prominent 

performance gain following data augmentation, with accuracy 

increasing from 68.51% to 84.74% and recall improving from 

68.41% to 84.74%. This indicates the substantial potential of 

this single-stage architecture for skin lesion classification tasks. 

Despite this, the VGG19 model achieved the best overall 

performance on the augmented dataset, with an accuracy of 

89.68% and an F1-score of 87.20%, suggesting the advantage 

of multi-stage architectures. These results demonstrate that data 

augmentation significantly improves the performance of all 

tested models, underscoring the importance of this technique in 

addressing class imbalance and data limitations within the skin 

lesion dataset. The confusion matrix in Fig.8. details the 

classification results obtained by the YOLOv11x model, 

specifically after its training on the augmented dataset. 

 

 
Fig.7. YOLOv11x Confusion Matrix 

The confusion matrix reveals that the model exhibited the 

lowest recall for the 'akiec,' 'bkl,' and 'mel' classes, frequently 

misclassifying these lesions into other classes. For instance, 

several 'bkl' lesions were often classified as 'nv'. This suggests 

that the model may struggle to differentiate patterns among 

these classes, likely due to visual similarities in some features, 

despite the application of data augmentation. To further 

evaluate the YOLOv11x-cls model's ability to discriminate 

between classes, we present the Receiver Operating 

Characteristic (ROC) curves and the Area Under the Curve 

(AUC) values in Fig.9. The ROC curves, shown in Fig.9, 

exemplify the model's strong ability to discriminate among the 

various classes. With a weighted average AUC of 0.9504, the 

YOLOv11x-cls model demonstrates exceptional overall 

performance. Class-wise AUC scores also highlight good 

performance, with the df class attaining the highest score of 

0.9972 and vasc the lowest at 0.9628. 

 

 

 
Fig.8. ROC AUC YOLOv11x 

For broader contextualization, Table V a comparison of the 

performance of this study and relevant research, outlined in the 

introduction, that used the HAM10000 dataset for skin lesion 

classification. 
TABLE V 

COMPARATIVE RESULTS ACROSS RELATED STUDIES 

Research Model Accuracy 

Adebiyi A [12] ALBEF 94.11% 

Ingle Y [13] VGG16 88.83% 

S. Ćirković [14]  YOLOv8 81.6% 

This research YOLOv11x 84.74% 

This research VGG19 89.68% 

This research ResNet50 87.51% 

 

The findings reveal that the YOLOv11x model, employing 

our method, attains a competitive and noteworthy level of 

accuracy. Although it does not achieve the performance levels 

of multi-stage models like VGG, ResNet, and the multi-modal 

system of Adebiyi A et al., YOLOv11x outperforms the 

YOLOv8 model used in prior studies [14]. Therefore, this study 

offers empirical support for applying YOLOv11x to skin lesion 

classification and highlights the effectiveness of data 

augmentation for improving its performance. 

IV. CONCLUSION 

This study focused on exploring the performance of the 

single-stage architecture YOLOv11 in skin lesion classification 

using the HAM10000 dataset, comparing it with the multi-stage 

architectures VGG19 and ResNet50, and investigating the 

impact of data augmentation on model performance. The 

results demonstrated that data augmentation significantly 

improved the accuracy of the YOLOv11x-cls model, from 

68.51% to 84.74%. However, VGG19 achieved the highest 

performance of all models, with an accuracy of 89.68%. This 

study highlights that while single-stage architectures offer 

computational efficiency, multi-stage architectures with 
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hierarchical feature extraction yield better classification 

performance. 

The main contribution of this research lies in providing 

empirical validation of YOLOv11's performance in the context 

of skin lesion classification, as well as confirming the 

significance of data augmentation in enhancing model 

performance. These findings indicate that although single-stage 

architectures are efficient in processing, multi-stage 

architectures maintain superiority in classification task 

performance. The YOLOv11x-cls model performed superior to 

the YOLOv8 model reported in prior studies. Furthermore, 

utilizing the current methodology, the performance gap 

between our YOLOv11x-cls and multi-stage models was 

comparatively small. Further research is recommended to 

explore more advanced models and to develop more innovative 

augmentation techniques to address challenges within skin 

lesion datasets. 
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