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Abstract— Driver drowsiness is one of the leading causes of traffic accidents, especially during long-distance journeys. This study developed a 

detection system based on landmarks and the MediaPipe framework to analyze drowsiness through eye blink duration. The system employs 

coordinate point initialization using regression trees to accurately detect objects, such as eyes. The research data consists of 30 videos, each 

lasting 30 seconds, collected from four Trans Java bus drivers. The videos were extracted to identify facial detection histograms and analyzed 
based on eye blink duration. The testing results showed a detection accuracy of 81% with an error rate of 19% for distances of 10 to 100 cm, 

while testing with 30 videos achieved an average accuracy of 88.745% and a Mean Squared Error (MSE) of 7.615%. The test results show that 

CNN outperforms MediaPipe in detecting drowsiness, with a higher average accuracy of 76.79% compared to 73.83% and a lower MSE value 
of 47.33 compared to 48.27. CNN is also more consistent in handling extreme lighting variations, while MediaPipe excels in processing 

efficiency, making it suitable for devices with limited resources. This study demonstrates that the landmarks and MediaPipe-based system 

effectively and innovatively detects drowsiness, offering a solution to improve driver safety during trips. 
 

Keywords— Drowsiness Detection; Landmarks; MediaPipe; Driving Safety; Eye Blink Analysis. 

 

I. INTRODUCTION 

Driver fatigue and drowsiness are the primary factors 

contributing to traffic accidents, especially during long-

distance journeys. Factors such as extended travel distances, 

prolonged driving durations, driver age, and irregular sleep 

patterns often affect driver concentration, increasing the risk of 

accidents. According to various studies, undetected drowsiness 

significantly contributes to fatal road accidents. Therefore, a 

reliable drowsiness detection system that provides early 

warnings is essential to help drivers remain focused during trips. 

Currently, various drowsiness detection technologies have 

been developed, including the use of additional hardware such 

as physical sensors or eye trackers. However, these approaches 

are often costly, require specialized devices, or are challenging 

to implement widely in commercial vehicles [1]. 

This research introduces a drowsiness detection system 

based on landmarks technology integrated with the MediaPipe 

framework. The system utilizes machine learning algorithms to 

analyze drivers' eye blinking duration to indicate drowsiness. 

By initializing facial coordinate points, the system can 

recognize things such as eyes with high precision using a 

regression tree technique. The research data was collected from 

30 videos of Trans Java bus drivers, each 30 seconds long, and 

was analyzed to identify facial histograms and blinking patterns. 

Testing demonstrated a detection accuracy of 81% across 

various distances (10–100 cm) and an average accuracy of 

88.745%, with a Mean Squared Error (MSE) of 7.615%. 

The novelty of this research lies in its combination of 

landmarks-based methods with the MediaPipe framework, 

enabling real-time data processing without requiring additional 

hardware. Furthermore, the study uses real-world video data of 

drivers, making the results more applicable compared to 

previous approaches. With high accuracy and efficient data 

processing, the developed system offers an innovative solution 

to enhance driving safety, particularly during long-distance 

journeys. This research also significantly contributes to 

developing more affordable, practical, and easily implemented 

table drowsiness detection technologies for various vehicles. 

II. RESEARCH METHODOLOGY 

This study aims to design and analyze a driver drowsiness 

detection system using a facial landmark-based approach and 

MediaPipe technology. The block diagram can be seen in the 

Fig.1. 

 
Fig.1. System Flow 



Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi 

  Vol.10 No.1 January 2025, P-ISSN : 2502-3470, E-ISSN : 2581-0367 

 

22 

DOI : https://doi.org/10.25139/inform.v10i1.9325 
 

1)  Data retrieval: In the data collection stage, video 

recording of the driver's face was carried out in various 

conditions, both when awake and when showing signs of 

drowsiness. This data was collected using a high-resolution 

camera installed in the vehicle to ensure optimal image quality. 

The data collection environment included scenarios of moving 

and stationary vehicles, with varying lighting to reflect real-

world conditions on the road, such as day and night. The study 

subjects consisted of drivers with various characteristics, 

including differences in age, gender, and level of driving 

experience, to ensure sufficient data diversity. Each recording 

session lasted for a certain duration and included normal 

driving activities and conditions intentionally created to induce 

drowsiness, such as starting the session after a short sleep 

period. The collected data was then labeled based on the 

driver's condition (awake or drowsy) as a basis for the analysis 

process and training of the detection model. 

2)  Data pre-processing: In the data pre-processing stage, 

the recorded video is broken down into individual frames to 

facilitate visual analysis. Each frame is then normalized to 

ensure consistent quality, including adjusting resolution, 

lighting, and contrast to be usable in various environmental 

conditions. Noise or disturbances that appear in the video, such 

as shadows or reflections, are removed to improve the accuracy 

of the analysis. After that, each frame is labeled according to 

the driver's condition (awake or drowsy), which will later be 

used as input data in model training. This process also includes 

removing blurry or irrelevant frames, such as frames with 

undetected faces. These steps aim to produce clean data ready 

for further analysis using facial landmark-based detection 

algorithms. 

3)  Landmark Detection: The landmark detection stage is the 

core of the analysis process to identify the driver's facial 

features in real time. Currently, MediaPipe technology is used 

to detect and track 468 landmark points on the face accurately. 

This system focuses on relevant facial areas, such as the eyes, 

mouth, nose, and head position, which are key indicators in 

detecting drowsiness. MediaPipe utilizes machine learning 

algorithms to recognize facial structures, even in varying 

lighting conditions or when the face is partially covered. The 

resulting landmark data includes the geometric coordinates of 

each point, which are then analyzed to detect changes in 

expression or certain movements, such as eyes that are closed 

for a longer period or a yawning mouth. This real-time 

detection process is carried out to enable a fast response in the 

driver drowsiness detection system. 

4)  Feature Extraction: In the feature extraction stage, 

important information is extracted from the acquired facial 

landmark data to identify signs of driver drowsiness. The main 

features analyzed include the Eye Aspect Ratio (EAR), which 

measures the degree of eye-opening and helps detect whether 

the eyes are closed longer than usual. 

5)  Detection Model: The detection model stage aims to 

build a system that can recognize the driver's drowsiness based 

on the features that have been extracted. This detection model 

is designed using a machine learning algorithm. The extracted 

landmark data trains the model to recognize drowsiness 

patterns, such as frequently closed eyes or yawning movements. 

The training process is carried out by dividing the data into a 

training set and a test set to ensure the model's generalization to 

new data. This model is evaluated using metrics such as 

accuracy, precision, sensitivity, and specificity to measure its 

ability to detect drowsiness correctly. The results of this model 

are integrated into a real-time system to warn drivers when 

signs of drowsiness are detected, thereby improving driving 

safety for a person. 

A detection system is a technology-based approach to 

identifying specific conditions or events using various sensing 

methods, data analysis, and decision-making processes. In the 

context of driver drowsiness detection, the system aims to 

monitor the driver's condition in real time and provide early 

warnings when signs of fatigue or drowsiness are detected. 

These systems are generally categorized into three main 

approaches: physiological-based, behavior-based, and vehicle-

based [2][3]. 

A. Physiological-Based Detection System 

This approach uses sensors to monitor biological parameters, 

such as heart rate, brain activity (electroencephalography or 

EEG), and skin conductance levels. This system is accurate 

because the data reflects the driver's body condition. However, 

this method requires expensive and invasive additional devices, 

making it less practical for widespread implementation in 

commercial vehicles [4]. 

B. Behavior-Based Detection System 

This approach uses visual data to identify changes in driver 

behavior, such as eye blink patterns, gaze direction, head 

movements, or changes in facial expressions. Camera-based 

technology is often used to capture facial images of the driver. 

Parameters such as eye blink duration or blink frequency are 

effective indicators in detecting drowsiness. This system is 

non-invasive and easier to implement, but it still has challenges, 

such as adequate lighting and the ability to work in dynamic 

environmental conditions [5]. 

C. Vehicle-Based Detection System 

This method uses data from the vehicle, such as steering 

patterns, vehicle speed, or responses to road conditions. This 

system is relatively simple and can be integrated directly with 

vehicle devices. However, this method only provides indirect 

detection that is less sensitive to changes in driver conditions 

[6]. 

D. Landmarks 

The landmarks method is a widely used for detecting and 

analyzing facial features, particularly in applications such as 

facial recognition, facial expression analysis, and drowsiness 

detection. Landmarks refer to coordinate points on the face that 

geometrically represent the primary facial structures, such as 

the eyes, nose, lips, and facial contours. These points assist 
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algorithms in accurately analyzing changes in the position or 

shape of facial features [7]. 

In drowsiness detection, landmarks can be used to monitor 

eye movements or conditions, such as blinking or eye openness, 

which are key indicators of drowsiness. Facial landmarks are 

coordinate points in a two-dimensional (2D) space. For 

example, in 2D coordinates, the position of the landmark on the 

face is expressed as Equation (1), where the  𝑥𝑖 variable is the 

horizontal coordinate in the image, and the 𝑦𝑖  variable is the 

vertical coordinate in the image using Equation (1). 

 

𝐿𝑖 = (𝑥𝑖, 𝑦𝑖)     (1) 

E. Eye Detection Using Landmarks 

In drowsiness detection applications, the landmarks used for 

eye analysis typically include the upper eyelid, lower eyelid, 

and the corners of the eyes. Based on the position of these 

landmarks, the Eye Aspect Ratio (EAR) is a method that 

calculates the ratio between the vertical distance of the upper 

and lower eyelids and the horizontal distance of the eye. This is 

done using geometric points in the eye area derived from facial 

landmarks [8][9].  

The method utilizes six key points on the eye structure, 

namely P1, P2, P3, P4, P5, and P6, to measure the horizontal 

and vertical dimensions of the eye. With this approach, the 

EAR enables accurate analysis of eye conditions, whether open 

or closed. The calculation of the EAR is formulated based on 

the relationship between these distances using Equation (2). 

 

𝐸𝐴𝑅 =  
IIp2−𝑃6II+IIp3−𝑝5II

2IIp1−𝑝4𝐼𝐼
    (2) 

 

Illustration of the eye object image wit 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6. 
 

 
Fig.2. Eye Aspect Ratio Eyes Open and Eyes Closed 

 

Based on the formula shown in Fig.2, the basic formula of 

EAR is shown, which is used to calculate the ratio between the 

vertical and horizontal dimensions of the eye, which is the main 

indicator in detecting drowsiness. In this calculation, points P1, 

P2, P3, P4, P5, and P6 are used as 2D coordinate references on 

the face to measure the width and height of the eye. As shown 

in Fig.2, the illustration of the difference in EAR values 

between the open and closed eye conditions is the basis for 

applying the threshold in detecting drowsiness in drivers. This 

visualization is important in helping readers understand the 

concept and mechanism of EAR calculation [10][11]. 

The driver fatigue detection system is based on eye blink 

analysis using the Eye Aspect Ratio (EAR) method, which 

focuses on identifying and analyzing the eye region. Each video 

frame captured in real-time is analyzed using the library and 

Google Colab to detect the eye's position. The initial stage of 

this process involves facial detection to identify the eye region 

for analysis. Subsequently, facial landmarks are extracted to 

determine the corners and eyelid lines. Calculating the length 

ratio to the eye landmarks' breadth using the EAR approach 

leads to determining the eye condition, which can be either 

open or closed [12][13]. 

The formula used, as shown in Fig.2, illustrates the positions 

of eye points in open and closed conditions, providing high 

accuracy. Here, P1, the outer corner of the left eye, and P4, the 

outer corner of the right eye, form a horizontal line that 

indicates the eye's width. The horizontal distance between P1 

and P4 is used as a reference in calculating the EAR. This 

measurement reflects how wide the eyes are open, a key 

component in the EAR calculation [14][15]. 

For P2, the upper midpoint of the left eyelid, and P6, the lower 

midpoint of the left eyelid, the distance between these points 

measures the vertical height on the left side of the eye. This 

distance indicates how much the left eyelid lifts or drops during 

a blink. Changes in this distance allow the system to detect 

whether the eye is open or closed. 

Similarly, P3, the upper midpoint of the right eyelid, and P5, 

the lower midpoint of the right eyelid, measure the vertical 

height on the right side of the eye. This distance reflects the 

movement of the right eyelid during blinking. Like the left side, 

changes in this distance are used to calculate the EAR and 

detect the eye's condition [16][17]. 

F. MediaPipe 

MediaPipe supports various applications, such as face 

detection, hand tracking, body pose estimation, and background 

segmentation. One of its key features is its ability to detect and 

track facial landmarks accurately and efficiently, making it 

highly useful in applications such as facial expression detection, 

emotion recognition, and drowsiness detection [18][19][20]. 

G. Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNNs) are a class of deep 

learning algorithms commonly used for processing and 

analyzing visual data, such as images and videos [23]. CNNs 

consist of several key layers, with one of the most important 

being the convolutional layer, which is responsible for 

extracting features from the input image. In this layer, filters (or 

kernels) are applied to the image by sliding over it, computing 

a weighted sum at each position to generate a feature map [24]. 

The convolution operation can be mathematically expressed as 

Equation (3), where the 𝐼  variable is the input image, the 𝐹 

variable is the filter (or kernel), the * denotes the convolution 

operation, the (𝑖, 𝑗) variable is the position in the output feature 

map, and the (𝑚, 𝑛) variable is the filter's dimensions. 

 

𝐼 ∗ 𝐹 = (𝑖, 𝑗) =  ∑ ∑ 𝐼(𝑖 + 𝑚 , 𝑗 + 𝑛 ) ∗ 𝐹(𝑚, 𝑛)𝑛𝑚          (3) 

 

After the convolution, the feature map is passed through an 

activation function, commonly ReLU (Rectified Linear Unit). 

It introduces non-linearity to the model and helps it learn more 

complex patterns. The ReLU function is defined as Equation 

(4). 



Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi 

  Vol.10 No.1 January 2025, P-ISSN : 2502-3470, E-ISSN : 2581-0367 

 

24 

DOI : https://doi.org/10.25139/inform.v10i1.9325 
 

 

𝑅𝑒𝑙𝑢 (𝑥) = max(0, 𝑥)                                                     (4) 

 

Next, pooling layers, particularly max pooling, are used to 

reduce the spatial dimensions of the feature map while retaining 

important information. Max pooling works by selecting the 

maximum value from a specific region in the feature map, 

which can be expressed as (5). Where, the 𝑃(𝑖, 𝑗) variable is the 

result of pooling at the position (𝑖, 𝑗), and the maximum value 

is taken from the pooling region of (𝐹(𝑚, 𝑛). The Max Polling 

can be mathematically expressed as Equation (5). 

 

𝑃(𝑖, 𝑗) = max(𝐹(𝑚, 𝑛))                                                 (5) 

 

Finally, the data is processed by fully connected layers after 

passing through multiple convolutional and pooling layers. The 

final output is typically produced by the output layer, which, in 

classification tasks, uses the softmax function to convert the 

raw output values into probabilities for each class using 

Equation (6), where  the (𝑧𝑖) variable is the output of the last 

fully connected layer for class 𝑖, and the denominator sums the 

exponentials of all the output values for all classes. 

 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗                                                      (6) 

CNNs have the advantage of automatic feature extraction 

and recognizing complex patterns in visual data. This makes 

them highly effective for applications like driver drowsiness 

detection, where facial features such as eye openness and 

mouth movements can be analyzed to detect signs of fatigue.  

H. Confusion Matrix  

Confusion Matrix is used to evaluate the performance of a 

classification model by comparing the model's predictions with 

the actual values [21]. This provides detailed information about 

how the model's predictions are distributed among the classes 

[22]. Helping to identify specific errors, True Positive (TP), 

False Positive (FP), True Negative (TN), and False Negative 

(FN). to calculate with the Equation (7).  

  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
      (7) 

 

I. Mean Squared Error (MSE) 

Mean Squared Error (MSE) is an evaluation metric used to 

measure how well a model's predictions compare to the actual 

values. MSE calculates the average of the squared differences 

between the predicted and actual values. A smaller MSE value 

indicates that the model's predictions are more accurate and 

have a smaller error. Because MSE uses the square of the 

differences, this metric is very sensitive to outliers or large 

errors in prediction.  

Mathematically, MSE can be expressed by the following 

Equation (8). Where the 𝑛 variable is the amount of data (the 

number of samples tested), the 𝑦𝑖  variable is an actual value 

(the actual value at the data i), the �̂�𝑖 variable  is the predicted 

value (value predicted by the model on the i data), and 

(𝑦𝑖 − �̂�𝑖)2.  

 

𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1                                            (8)    

 

The square of the difference between the actual value and 

the predicted value. If MSE = 0, the model has perfect 

predictions (no errors). A large MSE value indicates 

predictions far from the actual values, indicating poor model 

performance. 

III. RESULT AND DISCUSSION 

A. Testing with distance 

The landmark-based driver drowsiness detection system 

and MediaPipe have been tested through two main stages: 

training and testing. The training was conducted using 30 

videos to train the model to detect drowsiness based on facial 

landmark patterns such as eye movement, head position, and 

expression. Testing using 10 data with a distance of 1 to 10 

showed that the system detected drowsiness more often at even 

distances. However, these results are not entirely accurate, with 

significant false positive and false negative rates. A total of 30 

videos were used as training data to train the drowsiness 

detection system. This data includes the label detected (1) or 

not detected (0) generated by simulation. 

Table I shows the results of system detection at a distance 

of 1 to 10. The detection status is seen to vary between 0 (not 

detected) and 1 (detected), with a certain pattern. The confusion 

matrix from the test shows that the system successfully detected 

the non-drowsy condition four times correctly but only detected 

drowsiness accurately once. On the other hand, there were three 

cases where the system detected drowsiness in a non-drowsy 

condition (false positive), and two cases failed to detect 

drowsiness in a condition that was drowsy (false negative). This 

pattern indicates that the system is more sensitive to certain 

conditions but still has difficulty recognizing more complex 

situations. 
TABLE I 

 TEST DATASETS 

Sample Distance True Label Detected 

1 1 0 0 

2 2 0 1 

3 3 1 0 

4 4 0 1 

5 5 0 0 

6 6 1 1 

7 7 0 0 

8 8 0 1 

9 9 1 0 

10 10 0 1 

 

The graph Fig.3 compares True Labels (green line) and 

Detected Labels (red line) for 10 samples, with label values 

represented as 0 (Negative) and 1 (Positive). In some samples, 

such as Samples 1, 5, and 7, the system detected the labels 

correctly, as shown by the alignment between the green and red 

lines. However, in other samples, such as Sample 2, 3, 4, 8, 9, 

and 10, there are discrepancies between the actual and detected 
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labels, indicating prediction errors. For example, in Sample 2, 

the true label is 0, but the system detected 1, and in Sample 3, 

the true label is 1, but the system detected 0. Overall, this graph 

visually represents the system's performance, highlighting its 

accuracy and errors in label detection. 

 
Fig.3. Test Results with Distance 

 

Table II Confusion matrix shows that the system has 4 

correct predictions for the not detected category but only 1 

correct prediction for the detected category. On the other hand, 

there are 3 cases of false positive (wrong detection) and 2 cases 

of false negative (failed detection), as shown in Fig.4. 

 
TABLE II.  

CONFUSION MATRIX 

Actual/Predicted Not Detected Detected 

Not Detected 4 3 

Detected 2 1 

 

 
Fig.4. Confusion Matrix Results. 

 

Fig.4 shows the confusion matrix for the testing data, which 

is used to evaluate the performance of a model in classifying 

two conditions: "Detected" and "Not Detected". The confusion 

matrix consists of four main elements. The model correctly 

predicted 3 cases as "Not Detected" (True Negative) and only 

1 case as "Detected" (True Positive). However, there were 4 

incorrect predictions where the model classified "Not Detected" 

as "Detected" (False Positive) and 2 errors where "Detected" 

was predicted as "Not Detected" (False Negative). These results 

indicate that the model performs better at identifying the "Not 

Detected" condition than the "Detected" condition but tends to 

produce significant errors in detecting the actual condition. 

Errors such as False Positives and False Negatives highlight the 

model's weakness in distinguishing between the two 

conditions, which needs improvement to enhance its 

performance in the future. 

B. Video Accuracy Testing 

Video Accuracy Testing is an evaluation phase that measures 

how well the system detects the desired conditions based on 

video data. In this context, video is used as a data source to test 

the detection model, where each video frame is analyzed to 

identify patterns or features that match the system's objectives, 

for example, detecting driver drowsiness. The testing process 

involves comparing the system's prediction results with the 

actual labels (ground truth) to determine the level of accuracy. 

 
TABLE III 

 VIDEO ACCURACY TESTING 

Video Test Lighting Accuracy MSE 

1 140-315 Lux 84,58% 3,24% 

2 140-315 Lux 95,52% 13,91% 

3 140-315 Lux 60,43% 10,16% 

4 140-315 Lux 73,80% 10,95% 

5 140-315 Lux 96,66% 1,83% 

6 140-315 Lux 51,00% 5,67% 

7 140-315 Lux 93,77% 9,82% 

8 140-315 Lux 68,67% 94,05% 

9 140-315 Lux 67,73% 53,73% 

10 140-315 Lux 80,77% 19,44% 

11 485 - 805 Lux 95,14% 0,33% 

12 485 - 805 Lux 95,44% 0,28% 

13 485 - 805 Lux 94,75% 0,16% 

14 485 - 805 Lux 96,94% 0,22% 

15 485 - 805 Lux 96,89% 0,23% 

16 485 - 805 Lux 95.60% 0,24% 

17 485 - 805 Lux 96.99% 0,78% 

18 485 - 805 Lux 96.15% 0,20% 

19 485 - 805 Lux 94.75% 0,16% 

20 485 - 805 Lux 94.39% 0,24% 

21 2300-9500 Lux 74,40% 1,96% 

22 2300-9500 Lux 94,25% 0,34% 

23 2300-9500 Lux 95,98% 0,27% 

24 2300-9500 Lux 92,62% 1,02% 

25 2300-9500 Lux 95,32% 0,39% 

26 2300-9500 Lux 89,01% 0,96% 

27 2300-9500 Lux 91,97% 1,10% 

28 2300-9500 Lux 94,87% 0,28% 
29 2300-9500 Lux 95.84% 0,21% 

30 2300-9500 Lux 97.20% 0.27% 

Total Value: 2662,35% 228,45% 

Average Value: 88,745% 7,615% 

 

The results of the calculation of Table III can be seen from 

30 experimental data, and the overall average detection 

accuracy value is 88.745%. The MSE value of 30 experimental 

data has an average value of 7.615%. The graph of test Table 

III can be seen in the graph in Fig.5. 
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Fig.5. Test Results from 30 With 30 Video Data 

 

Fig.5 for the graph illustrates the relationship between 

accuracy (%) (blue line) and Mean Squared Error (MSE) (red 

line) across various video tests under three lighting conditions: 

140-315 Lux, 485-805 Lux, and 2300-9500 Lux. Under low 

lighting conditions (140-315 Lux, Video Tests 1-10), accuracy 

fluctuates between 51.00% and 96.66%, with relatively high 

MSE in some tests, such as Video Tests 8 and 9 (94.05 and 

53.73, respectively), indicating inconsistent performance. In 

contrast, under moderate lighting conditions (485-805 Lux, 

Video Tests 11-20), accuracy remains consistent above 94%, 

with very low MSE (ranging from 0.16 to 0.78), reflecting 

optimal performance in this condition. In high lighting 

conditions (2300-9500 Lux, Video Tests 21-30), accuracy is 

generally high (up to 97.20%). Still, slight fluctuation and 

increased MSE in some tests (e.g., Video Tests 21 and 26) 

suggest that overly bright lighting can affect results, albeit not 

significantly. Overall, moderate lighting delivers the best 

system performance with high accuracy and very low MSE, 

while low and high lighting conditions tend to cause greater 

variations in performance. 

Here are the results of comparing the CNN method and 

MediaPipe landmarks. CNN has advantages over MediaPipe in 

detecting driver drowsiness. CNN recorded a higher average 

accuracy (76.79%) compared to MediaPipe (73.83%) and a 

lower MSE value of 47.33 compared to 48.27, indicating a 

more stable and accurate prediction performance. CNN is also 

more robust in handling extreme lighting variations, providing 

more consistent results than MediaPipe, which tends to be 

affected by lighting conditions. However, MediaPipe excels in 

processing efficiency due to its landmark-based approach, 

making it suitable for devices with limited resources. 

Therefore, CNN is the better choice for high-precision 

applications, while MediaPipe is ideal for systems that 

prioritize efficiency and real-time speed for comparison in 

Table IV. 

 
 

TABLE IV 

 VIDEO ACCURACY TESTING COMPARATIVE TEST RESULTS BETWEEN MEDIAPIPE LANDMARKS AND CNN 

Video Test Lighting (Lux) Accuracy MediaPipe (%) MSE MediaPipe Accuracy CNN (%) MSE CNN 

1 485-805  79.16 38.93 80.64 37.31 

2 2300-9500  58.19 27.21 62.04 25.41 

3 2300-9500  53.12 82.89 57.16 82.22 

4 485-805  95.55 35.74 98.80 35.48 

5 140-315  96.35 28.17 100.43 27.68 

6 140-315  88.80 54.32 91.78 53.44 

7 140-315 64.62 14.18 67.71 12.53 

8 2300-9500  54.69 80.24 57.40 78.51 

9 485-805  82.84 7.55 83.94 7.49 

10 2300-9500  71.13 98.69 72.56 97.64 

11 140-315  55.86 77.25 56.99 76.39 

12 2300-9500  73.77 19.95 77.32 19.47 

13 2300-9500  51.65 0.65 53.91 0.37 

14 140-315  93.65 81.56 96.68 80.85 

15 140-315  62.42 70.72 67.05 68.83 

16 140-315  81.80 72.93 83.80 72.25 

17 140-315  64.96 77.15 67.60 76.09 

18 485-805  74.96 7.50 78.98 6.08 

19 485-805  76.24 35.91 78.16 35.15 

20 140-315  58.87 11.68 60.18 9.74 

21 485-805  96.54 86.32 98.70 84.39 

22 140-315  87.21 62.37 88.85 61.83 

23 140-315  95.10 33.16 99.82 32.14 

24 485-805  92.95 6.45 97.18 5.81 

25 485-805  78.70 31.17 82.23 30.56 

26 2300-9500  94.25 32.59 98.74 32.47 

27 140-315  54.25 72.99 58.46 71.75 

28 485-805  59.41 63.79 61.16 62.76 

29 485-805  52.17 88.73 56.74 88.58 

30 140-315  65.62 47.27 68.78 46.68 

Total Value: 2214.83 % 1448.06 % 2303.79 % 1419.9 % 

 Average Value: 73.83 % 48.27 % 76.79 % 47.33 % 

A comparison in Table IV shows the difference in the accuracy value of the MediaPipe accuracy system with CNN 
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accuracy. The MSE value of testing the two methods will be 

sought. More details will be displayed in the form of a graph 

below. 

 

 
Fig.6. Video Accuracy Testing Comparative Test Results Between 

MediaPipe Landmarks And CNN. 

 

Fig.6, based on the graph, shows that the accuracy values for 

both methods, MediaPipe and CNN, vary across the tested 

videos. In general, CNN accuracy (the orange bars) is higher 

than MediaPipe (blue bars) in most videos. CNN accuracy 

ranges between 60% and 100%, with many videos showing 

accuracy values above 75%. Meanwhile, MediaPipe accuracy 

is generally lower, ranging between 50% and 90%, with some 

videos having accuracy values nearly equal to CNN. Despite 

the fluctuations, this comparison shows that CNN consistently 

delivers more accurate results, although the differences 

between the two methods are not very significant in some 

videos. This indicates that CNN excels in precision, while 

MediaPipe remains competitive in certain cases. 

For a comparison of the MSE accuracy values of MediaPipe 

landmarks with CNN accuracy, see the graph below Fig.7. 

 

 
Fig.7. Video MSE Testing Comparative Test Results Between MediaPipe 

Landmarks And CNN. 

 

Based on the graph comparing the MSE values between the 

MediaPipe method (green bars) and CNN (red bars) for each 

tested video, it can be seen that the MSE for CNN tends to be 

lower than MediaPipe in most videos. Some films have 

extremely low values that are very close to zero, indicating that 

the predictions are more accurate and dependable. The MSE 

values for CNN range from 10 to 90, with certain films 

displaying extremely low values. Meanwhile, the MSE values 

for MediaPipe vary more widely, with some videos reaching 

values close to 100, indicating higher prediction errors. In 

certain videos, such as videos 11, 20, and 30, the difference in 

MSE between MediaPipe and CNN is quite significant, 

whereas CNN has a much lower MSE. However, there are some 

videos where the difference in MSE values is not very 

noticeable, such as videos 1 and 15. This indicates that CNN 

performs more consistently and stably in producing predictions 

with smaller errors. At the same time, MediaPipe tends to be 

less stable, particularly in videos with more complex or varied 

conditions. 

A comparison of the method with previous research 

conducted by K. Srinivas, 2024 using the RNN method of 

detecting drowsiness in drivers resulted in an accuracy of 76. 

The accuracy of this study using CNN system accuracy is 

76.79%. This shows that the system we created has higher 

accuracy. 

IV. CONCLUSION 

The test results indicate that the CNN method has advantages 

over MediaPipe in detecting driver drowsiness. CNN achieved 

a higher average accuracy of 76.79% compared to MediaPipe 

(73.83%) and a lower MSE value of 47.33 compared to 48.27, 

indicating more stable and accurate predictions. CNN is also 

more robust in handling extreme lighting variations, delivering 

more consistent results than MediaPipe, which tends to be 

affected by lighting conditions. However, MediaPipe excels in 

processing efficiency due to its landmark-based approach, 

making it suitable for devices with limited resources. Therefore, 

CNN is a better choice for high-precision applications, while 

MediaPipe is ideal for systems that prioritize efficiency and 

real-time performance. 

Testing results show that the drowsiness detection system 

based on landmarks and MediaPipe performs reasonably well, 

achieving a detection accuracy of 81% at distances of 10–100 

cm, despite a 19% error rate. Further testing using 30 videos 

resulted in a higher average accuracy of 88.745%, with an MSE 

of 7.615%. These figures demonstrate that the system is 

innovative and effective in detecting drowsiness, showing 

significant potential for enhancing driver safety during travel. 

However, an analysis of the confusion matrix revealed some 

system limitations. The system correctly predicted four 

instances in the not detected category but only one correct 

prediction in the detected category. Additionally, there were 

three false positive cases (incorrectly detecting drowsiness) and 

two false negative cases (failing to detect drowsiness). These 

errors can affect the system's reliability, particularly in critical 

situations where accurate detection is crucial. 

For future research, training the system with more diverse 

data, including variations in facial expressions, lighting 

conditions, and camera angles, is recommended to improve 

generalization. Furthermore, integrating features such as blink 

analysis, pupil detection, or head dynamics could enhance 

detection accuracy. Employing more complex deep learning 

methods or combining algorithms with other sensors, such as 

infrared, could also address the limitations of camera-based 

detection alone. 
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