Genetic Algorithm for Optimizing Traveling Salesman Problems with Time Windows (TSP-TW)

  • Program Studi Teknik Informatika Fakultas Teknik Industri UPN “Veteran” Yogyakarta
  • Program Studi Teknik Informatika Fakultas Teknik Industri UPN “Veteran” Yogyakarta
  • Program Studi Teknik Informatika Fakultas Teknik Industri UPN “Veteran” Yogyakarta
  • Program Studi Teknik Informatika Fakultas Teknik Industri UPN “Veteran” Yogyakarta
  • Program Studi Teknik Informatika Fakultas Teknik Industri UPN “Veteran” Yogyakarta
Abstract views: 709 , PDF downloads: 990
Keywords: TSP-TW, Time Window, Genetic Algorithm, Route Optimization, Adult Tourism Object

Abstract

The concept of Traveling Salesman Problem (TSP) used in the discussion of this paper is the Traveling Salesman Problem with Time Windows (TSP-TW), where the time variable considered is the time of availability of attractions for tourists to visit. The algorithm used for optimizing the solution of Traveling Salesman Problem with Time Windows (TSP-TW) is a genetic algorithm. The search for a solution for determining the best route begins with the formation of an initial population that contains a collection of individuals. Each individual has a combination of different tourist sequence. Then it is processed by genetic operators, namely crossover with Partially Mapped Crossover (PMX) method, mutation using reciprocal exchange method, and selection using ranked-based fitness method. The research method used is GRAPPLE. Based on tests conducted, the optimal generation size results obtained in solving the TSP-TW problem on the tourist route in the Province of DIY using genetic algorithms is 700, population size is 40, and the combination of crossover rate and mutation rate is 0.70 and 0.30 There is a tolerance time of 5 seconds between the process of requesting distance and travel time and the process of forming a tourist route for the genetic algorithm process.

Downloads

Download data is not yet available.

References

[1] Arkeman, Y., Seminar, K. B., & Gunawan, H. (2012). Algoritma Genetika. Teori Dan Aplikasinya Untuk Bisnis Dan Industri. https://doi.org/10.1007/s13398-014-0173-7.2
[2] Cahya, D., Nugraha, A., Mahmudy, W. F., Ilmu, M., Informatika, K., Komputer, F. I., … No, J. V. (2015). Optimasi Vehicle Routing Problem With Time Windows Pada Distribusi Katering Menggunakan Algoritma, (November), 2–3.
[3] Dinas Pariwisata. (2017). Statistik Kepariwisataan 2017.
[4] Pelka, N. A. (2017). Sistem Informasi Geografis Lokasi Pool Bus Di Kota Medan Menggunakan Metode Grapple Berbasis Android.
[5] Pressman, R. S. (2012). Rekayasa Perangkat Lunak: Pendekatan Praktisi. Andi.
[6] Priandani, N. D., & Mahmudy, W. F. (2015). Optimasi Travelling Salesman Problem With Time Windows ( TSP-TW ) pada Penjadwalan Paket Rute Wisata Di Pulau Bali Menggunakan Algoritma Genetika, (November), 2–3.
[7] Sugiyono. (2012). Metode Penelitian Kuantitatif Kualitatif dan R&D. Bandung: Alfabeta.
Published
2019-11-30
How to Cite
, , , , & . (2019). Genetic Algorithm for Optimizing Traveling Salesman Problems with Time Windows (TSP-TW). International Journal of Artificial Intelligence & Robotics (IJAIR), 1(1), 1-8. https://doi.org/10.25139/ijair.v1i1.2024