A LOF K-Means Clustering on Hotspot Data





K-Means is the most popular of clustering method, but its drawback is sensitivity to outliers. This paper discusses the addition of the outlier removal method to the K-Means method to improve the performance of clustering. The outlier removal method was added to the Local Outlier Factor (LOF). LOF is the representative outlier’s detection algorithm based on density. In this research, the method is called LOF K-Means. The first applying clustering by using the K-Means method on hotspot data and then finding outliers using the LOF method. The object detected outliers are then removed. Then new centroid for each group is obtained using the K-Means method again. This dataset was taken from the FIRM are provided by the National Aeronautics and Space Administration (NASA). Clustering was done by varying the number of clusters (k = 10, 15, 20, 25, 30, 35, 40, 45 and 50) with cluster optimal is k = 20. The result based on the value of Sum of Squared Error (SSE) shown the LOF K-Means method was better than the K-Means method.
Copyright (c) 2020 Rani Rotul Muhima, M Kurniawan, O T Pambudi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with International Journal of Artificial Intelligence & Robotics (IJAIR) agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.