Traffic Light Automation with Camera Tracker and Microphone to Recognize Ambulance Using the HAAR Cascade Classifier Method

Eldha Nur Ramadhana Putra, Edi Prihartono, Budi Santoso

Abstract


Lack of knowledge by road users regarding these priorities, especially when there is a passing ambulance that is often stuck in traffic at a crossroads due to accumulated vehicles and the traffic light is still red. The purpose of this paper is to simulate traffic light automation by giving a green light every time an ambulance passes by using the HAAR and Computer Vision methods. The HAAR method is used for training data from less sharp images as part of the Ambulance object classification process. The Computer Vision method is used as a tool in image processing objects to processing the image captured by the Camera. Hardware through the microphone performs pattern recognition to pick up ambulance sirens. The test result at the average frequency caught by the microphone is 1.3 kHz. The test results of the System to capture ambulance objects received a precision value of 75%, a recall of 100%, and an accuracy of 75%.

Keywords


Traffic Light Automation, Ambulance, Computer Vision, HAAR Cascade Classifier.

Full Text:

PDF

References


Republik Indonesia. 2009. Undang-Undang No. 22 Tahun 1999 Tentang Lalu Lintas dan Angkutan Jalan, Pasal 209. Lembaran Negara RI Tahun 2009. Sekretariat Negara. Jakarta.

N. V. Amalia, R. P. Priyanti, dan P. Nahariyani, “Efektivitas Penggunaan Ambulance Siaga Desa Dalam Transportasi Pre Hospital,” Prodi S1 Keperawatan Stikes Pemkab Jombang.

Sunu Jatmika, Indra Andiko, Simulasi Pengaturan Lampu Lalu Lintas Berdasarkan Data Image Processing Kepadatan Kendaraan Berbasis Mikrokontroler Atmega16, Jurnal Ilmiah Teknologi dan Informasi ASIA, Vol. 8 No 2, Agustus 2014.

Riansa E. P. Tolah, Rizal Sengkey, Yaulie D. Y. Rindengan, Perancangan Simulasi Otomatis Traffic lightMenggunakan Citra Digital Studi Kasus Persimpangan Toar-Lumimuut, E-journal Teknik Elektro dan Komputer-FT, UNSRAT, volume 4 no. 4 (2015).

Wamiliana, Ossy Dwi Endah, Izzatuz Zakiyah Mukhtarisa, Simulasi Sistem Pengaturan Lalu Lintas Otomatis dengan Karakteristik Kerapatan Pada Simpang Tiga dan Simpang Empat Menggunakan Algoritma Miloza, Jurnal Komputasi Ilmu Komputer Unila, Vol. 1, No. 2, 2013.

Armandio Philip, Cheetah Savana Putri, Putra Maulana Arifanggi, Timer Traffic Light Control Using Raspberry PI, Aptisi Transactions On Technopreneurship (ATT) University Of Raharja, Vol. 1 No. 2, September 2019.

Xiao Zhengxing, Jiang Qing, Research on intelligent traffic light control system based on dynamic Bayesian reasoning, Computers and Electrical Engineering Shenzhen Polytechnic, 84 (2020).

National Semiconductor, LM567/LM567C Tone Decoder, www.national.com, Americas. 2003.

Havit HV-N5086 Camera website (2019). [Online]. Available: https://www.havit.hk/products/havit-hv-n5086-camera-and-webcam/

Orange Pi Lite website (2018). [Online]. Available: https://linux-sunxi.org/Orange_Pi_Lite.

Rudiati Evi Masithoh, Budi Rahardjo, Lilik Sutiarso dan Agus Hardjoko, Pengembangan Computer Vision System Sederhana Untuk Menentukan Kualitas Tomat, AGRITECH Universitas Gadjah Mada, Vol. 31, No. 2, Mei 2011.

K O Sanjaya1, G Indrawan, K Y Ernanda Aryanto, Pendeteksian Objek Rokok Pada Video Berbasis Pengolahan Citra Dengan Menggunakan Metode Haar Cascade Classifier, Journal of Natural Science and Engineering, Vol.1 (3) pp. 92-99, 2017.

Evta Indra, M Diarmansyah Batubara, Muhammad Yasir dan Sugandi Chau, Desain dan Implementasi Sistem Absensi Mahasiswa Berdasarkan Fitur Pengenalan Wajah dengan Menggunakan Metode Haar-Like Feature, Jurnal Penelitian Teknik Informatika Universitas Prima Indonesia (UNPRI) Medan, Volume 3 Nomor 1, Oktober 2018.




DOI: http://dx.doi.org/10.25139/ijair.v2i2.3194

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Eldha Nur Ramadhana Putra

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

____________________________________________________________
International Journal of Artificial Intelligence & Robotics (IJAIR)
ISSN 2686-6269 (Online)
Published By Universitas Dr. Soetomo
Managed By Informatics Department, Universitas Dr Soetomo
Address Jl. Semolowaru no 84, Surabaya, 60118, (031) 5944744
Website https://ejournal.unitomo.ac.id/index.php/ijair/index
Email [email protected]

Inform is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.