Recognition of Korean Alphabet (Hangul) Handwriting into Latin Characters Using Backpropagation Method

  • Anang Aris Widodo Informatics Engineering Department, University of Merdeka Pasuruan
  • Muchammad Yuska Izza Mahendra Informatics Engineering Department, University of Merdeka Pasuruan
  • Mohammad Zoqi Sarwani Informatics Engineering Department, University of Merdeka Pasuruan
Abstract views: 9 , PDF downloads: 19
Keywords: Korea, Hangul, Backpropagation Method, Artificial Neural Network

Abstract

The popularity of Korean culture today attracts many people to learn everything about Korea, especially in learning the Korean language. To learn Korean, you must first know Korean letters (Hangul), which are non-Latin characters. Therefore, a digital approach is needed to recognize handwritten Korean (Hangul) words easily. Handwritten character recognition has a vital role in pattern recognition and image processing for handwritten Character Recognition (HCR). The backpropagation method trains the network to balance the network's ability to recognize the patterns used during training and the network's ability to respond correctly to input patterns that are similar but not the same as the patterns used during training. This principle is used for character recognition of Korean characters (Hangul), a sub-topic in fairly complex pattern recognition. The results of the calculation of the backpropagation artificial neural network with MATLAB in this study have succeeded in identifying 576 image training data and 384 Korean letter testing data (Hangul) quite well and obtaining a percentage result of 80.83% with an accuracy rate of all data testing carried out on letters. Korean (Hangul).

Downloads

Download data is not yet available.

References

M. Salemdeeb and S. Ertürk, "Full depth CNN classifier for handwritten and license plate characters recognition," PeerJ Comput. Sci., vol. 7, pp. 1–22, 2021.

I. J. Kim and X. Xie, "Handwritten Hangul recognition using deep convolutional neural networks," Int. J. Doc. Anal. Recognit., vol. 18, no. 1, pp. 1–13, 2015.

Rajashekararadhya, S.V. & Ranjan, P,V., "Ensemble Neural Network in Classifying Handwritten Arabic Numerals. Journal of Theoretical and Applied Information Technology," Vol. 5, 63-79, (2009).

D. A. Sani and M. Saifulloh, "Speech to Text Processing for Interactive Agent of Virtual Tour Navigation," Int. J. Artif. Intell. Robot., vol. 1, no. 1, p. 31, 2019.

M. Z. Sarwani, D. A. Sani, and F. C. Fakhrini, "Personality Classification through Social Media Using Probabilistic Neural Network Algorithms," Int. J. Artif. Intell. Robot., vol. 1, no. 1, p. 9, 2019.

Andi Wahju Rahardjo Emanuel & Arie Hartono, "Pengembangan Aplikasi Pengenalan Karaketer Alfanumerik Dengan Menggunakan Algoritma Neural Network Three-Layer Backpropagation", Jurnal Informatika, Vol.4, No.1, Juni 2008.

Delsavonita, & Candra, F., “Sistem Pengenalan Pola Karakter Huruf Korea Menggunakan Metode Principal Component Analysis dan Jaringan Syaraf Tiruan Back Propagation, “ Universitas Riau, (2018).

Siang, JJ, “Jaringan Syaraf Tiruan dan Pemrogramanya Menggunakan Matlab,” Yogyakarta, Penerbit Andi, (2009).

Prasojo, A., “Pengenalan Karakter Alphabet Menggunakan Jaringan Syaraf Tiruan,” 7, (2011).

Duslasrip, M., “PENGGUNAAN JARINGAN SYARAF TIRUAN UNTUK MENDETEKSI STATUS GIZI BALITA DENGAN METODE BACKPROPAGATION,” (2015).

Adistya, R., & Muslim, M. A., “Deteksi dan Klasifikasi Kendaraan menggunakan Algoritma Backpropagation dan Sobel,” Journal of Mechanical Engineering and Mechatronics, (2016).

Nurmilah, N., Sugiharto, A., & Sarwoko, E. A., “ALGORITMA BACKPROPAGATION NEURAL NETWORK UNTUK PENGENALAN POLA HURUF JAWA,” Jurnal Masyarakat Informatika, Vol. 1, 1, (2006).

Kusumadewi, S, “Membangun Jaringan Syaraf Tiruan Menggunakan Matlab dan Excel Link,” Yogyakarta, Graha Ilmu, (2004).

Makridakis, S dan Steven, C.W., “Metode dan Aplikasi Peramal,” Jakarta, Erlangga, (1999).

Published
2021-11-30
How to Cite
Anang Aris Widodo, Muchammad Yuska Izza Mahendra, & Mohammad Zoqi Sarwani. (2021). Recognition of Korean Alphabet (Hangul) Handwriting into Latin Characters Using Backpropagation Method. International Journal of Artificial Intelligence & Robotics (IJAIR), 3(2), 50-57. https://doi.org/10.25139/ijair.v3i2.4210