Optimization of Foodstuffs for Patients with Hypertension Using the Improved Particle Swarm Optimization Method
Abstract
Hypertension is when a person's blood pressure exceeds the reasonable limits determined by experts. A person who suffers from high blood pressure or hypertension risks developing non-communicable diseases that can endanger the sufferer's life, such as stroke and heart attack. One of the causes that can increase and worsen hypertension is an unhealthy lifestyle. Due to a lack of knowledge in regulating food composition, it is difficult for ordinary people to vary the composition of food in the next few days, which is usually done by simply avoiding foods ordered by doctors or experts. The Improved Particle Swarm Optimization (IPSO) method was chosen because it can be used to solve the problem of optimizing optimal food composition. In addition, the IPSO method can also remember the worst position ever visited so that particles can pass through a bad position and always try a better position. Based on the research conducted, the IPSO method succeeded in producing recommendations for the composition of foods consumed by people with hypertension consisting of 3 portions, namely breakfast, lunch, and dinner. Breakfast and lunch contain staple foods, plant sources, animal sources, vegetables, fruits, or complementary foods. At the same time, dinner contains only staple foods, animal sources, plant sources, and vegetables. This research found that the iteration that can produce optimal results is 400 iterations and the most optimal particles are 10 particles. This happens because the price of food ingredients is included in the calculation.
Downloads
References
Sundari, L., & Bangsawan, M. (2017). Faktor-faktor yang berhubungan dengan kejadian hipertensi. Jurnal Ilmiah Keperawatan Sai Betik, 11(2), 216-223.
Barron, S., Balanda, K., Hughes, J., & Fahy, L. (2014). National and subnational hypertension prevalence estimates for the Republic of Ireland: better outcome and risk factor data are needed to produce better prevalence estimates. BMC Public Health, 14(1), 1-10.
Suoth, M., Bidjuni, H., & Malara, R. (2014). Hubungan gaya hidup dengan kejadian hipertensi di puskesmas kolongan kecamatan kalawat kabupaten minahasa utara. Jurnal keperawatan, 2(1).
Shafaat, M., Cholissodin, I., & Santoso, E. (2018). Optimasi Komposisi Makanan Diet bagi Penderita Hipertensi menggunakan Algoritme Genetika. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.
Ayu puspitasari, n. I. L. A. (2007). Dampak perubahan harga beras Terhadap pola konsumsi masyarakat pra-sejahtera (Studi Kasus di Desa Kalidilem, Kecamatan Randuagung, Kabupaten Lumajang) (Doctoral dissertation, University of Muhammadiyah Malang).
Aksol, M. I. (2021). Pengaruh Ekonomi Faktor Ekonomi Terhadap Gizi Balita.
Purnomo, A. M., Werdiastu, D., Raissa, T., Widodo, R., & Wijayaningrum, V. N. (2019). Algoritma Genetika untuk Optimasi Komposisi Makanan Bagi Penderita Hipertensi. Jurnal Teknologi dan Sistem Komputer, 7(1), 1-6.
Bachriansyah, R. A., & Ferdinand, A. T. (2011). “Analisis Pengaruh Kualitas Produk, Daya Tarik Iklan, dan Persepsi Harga Terhadap Minat Beli Konsumen Pada Produk Ponsel Nokia (Studi Kasus Pada Masyarakat di Kota Semarang) (Doctoral dissertation, Universitas Diponegoro).
Caturrahmanto, A., Muflikhah, L., & Cholissodin, I. (2019). Optimasi Variasi Menu Makanan Sesuai Gizi Pada Anak Panti Asuhan Dengan Improved Particle Swarm Optimization. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.
Nguyen, H., Odelola, O. A., Rangaswami, J., & Amanullah, A. (2013). A review of nutritional factors in hypertension management. International journal of hypertension, 2013.
Kumala, M. (2014). Peran diet dalam pencegahan dan terapi hipertensi. Damianus Journal of Medicine, 13(1), 50-61.
Fauziyah, A. N., & Mahmudy, W. F. (2017). Optimasi Komposisi Makanan untuk Penderita Hipertensi Menggunakan Variable Neighborhood Search. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.
Wahyuningsih, W., & Astuti, E. (2013). Faktor yang mempengaruhi hipertensi pada usia lanjut. Jurnal Ners dan Kebidanan Indonesia, 1(3), 71-75.
Kartikasari, A., Ratnawati, D. E., & Kusuma, T. S. (2017). Optimasi Komposisi Makanan untuk Penderita Hipertensi Menggunakan Algoritma Genetika dan Simulated Annealing. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.
Welis, W., & Sazeli, R. M. (2013). Gizi untuk aktifitas fisik dan kebugaran.
Yonghe, L., Minghui, L., Zeyuan, Y. & Lichao, C., 2015. Improved Particle Swarm Optimization Algorithm and Its Application in Text Feature Selection.
Hasjidla, N. F., Cholissodin, I., & Widodo, A. W. (2018). Optimasi komposisi pakan untuk memenuhi kebutuhan nutrisi ayam petelur dengan biaya minimum menggunakan improved particle swarm optimization (IPSO). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.
Purnomo, A. M., Werdiastu, D., Raissa, T., Widodo, R., & Wijayaningrum, V. N. (2019). Algoritma Genetika untuk Optimasi Komposisi Makanan Bagi Penderita Hipertensi. Jurnal Teknologi dan Sistem Komputer, 7(1), 1-6.
Boestari, A. A., Ratnawati, D. E., & Kusuma, T. S. (2017). Optimasi Komposisi Makanan Bagi Penderita Hipertensi Menggunakan Metode Particle Swarm Optimization. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.
Pudyakinarya, G. D., Cholissodin, I., & Bachtiar, F. A. (2018). Implementasi Algoritme Improved Particle Swarm Optimization Untuk Optimasi Komposisi Bahan Makanan Untuk Memenuhi Kebutuhan Gizi Penderita Penyakit Diabetes Melitus. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-ISSN, 2548, 964X.
Copyright (c) 2022 Muhamad Setiawan Wicaksono
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with International Journal of Artificial Intelligence & Robotics (IJAIR) agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.