Mengukur Kinerja Layanan Internet Indihome dari Opini Masyarakat Menggunakan Sentimen Analisis Twitter Dengan Metode Naïve Byes

  • Heribertus Himawan Universitas Dian Nuswantoro
  • Rafif Murtadho Universitas Dian Nuswantoro
  • Dian Ferriswara Universitas Dr. Soetomo Surabaya
Abstract views: 53 , Full Text (PDF) downloads: 56
Keywords: Naïve Bayes, Sentiment analysis, Twitter, Indihome

Abstract

In 2019, 73.7% of Indonesians said that their purpose for using the internet was to access social media. One of the social media used is Twitter. With many tweets that have been published through Twitter, these tweets can contain user opinions on a particular thing, it can be like an event in the surrounding Indihome. Through Twitter, users can discuss their complaints or satisfaction with the Indihome service. For that reason, a method is needed, namely sentiment analysis to find out whether the data contains negative or positive opinions. The author uses the Naïve Bayes method in conducting sentiment analysis on the opinions or opinions of Indihome service users on Twitter, to know how accurate the Naïve Bayes method is applied to sentiment analysis. After testing using the Naïve Bayes method, the results obtained are 82% accuracy, 78% precision, 84% recall, and 81% f1-score.

References

APJII, 2020, Laporan Survei Internet APJII 2019 - 2020 [Q2], APJII, Jakarta.

Darma, dan I. M. B. S., (2017), Penerapan Sentimen Analisis Acara Televisi Pada Twitter Menggunakan Support Vector Machine Dan Algoritma Genetika Sebagai Metode Seleksi Fitur, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, No.43, Vol.2, 998-1007.

Abdan S., (2017), Analisis Sentimen Masyarakat Terhadap E-Commerce Pada Media Sosial Menggunakan Metode Naive Bayes Classifier (NBC) Dengan Seleksi Fitur Information Gain (IG), Tesis, Fakultas Sains dan Teknologi, Universitas Islam Negeri Maulana Malik Ibrahim, Malang.

Harijiatno, Servasius Dwi (2019) Analisis sentimen pada twitter menggunakan Multinominal Naive Bayes. Skripsi thesis, Sanata Dharma University.

Feldman, R. dan James, S. (2007). The Text Mining Handbook. New York: Cambridge.

Pai, P. F., & Liu, C. H. (2018). Predicting vehicle sales by sentiment analysis of Twitter data and stock market values. IEEE Access, 6, 57655-57662.

Guo, X., & Li, J. (2019, October). A novel twitter sentiment analysis model with baseline correlation for financial market prediction with improved efficiency. In 2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS) (pp. 472-477). IEEE.

Published
2022-08-05
Section
Articles