Main Article Content

Abstract

Fluidized Bed Dryer with perforated plate bed is used as drying for coffee processing. This study succeeded in reducing the water content of coffee beans by 0.11% within 30 minutes of drying more evenly with fluidization on coffee beans. The level of maturity of coffee beans can be achieved at a control set temperature of 200°C the coffee beans undergo a light roasting process with the center of the coffee beans receiving 83.8°C, at a temperature of 250°C the coffee beans undergo a medium roasting process with the center of the coffee beans receiving 130°C, and at the control set temperature of 300°C the coffee beans underwent a dark roasting process with the center of the coffee beans receiving a temperature of 107.6°C. The advantage of this Fluidized Bed Dryer with perforated plate bed compared to other mechanical dryers lies in its low energy requirements, which depend on the heater and blower power as its main components.

Keywords

Coffee Bean; Drying; Fluidized Bed Dryer; Moisture Content; Perforated Plate

Article Details

Author Biographies

Haris Ilman Fiqih, University of Mercu Buana

Mechanical Engineering

Hilmy Nurfuad , University of Mercu Buana

Mechanical Engineering

How to Cite
Ruhyat, N., Ilman Fiqih, H., & Nurfuad , H. (2022). Analysis of Drying Air Temperature on Moisture Content in Coffee Beans Using a Fluidized Bed Dryer with Perforated Plates. Food Science and Technology Journal (Foodscitech), 5(1), 10-21. https://doi.org/10.25139/fst.v5i1.4545

References

  1. Chan, D.-S., & Kuo, M.-I. (2018). Wheat Germ Drying with Different Time-Temperature Combinations in a Fluidized Bed Dryer. PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Teipei City 24205, Taiwan, 1-16.
  2. Chan, D.-S., & Kuo, M.-I. (2019). Effect of Loading on Wheat Germ Drying in a Batch Fluidized Bed for Industrial Production. Department of Information Technology, Lee-Ming Institute of Technologi, New Teipei City 243, 1-17.
  3. Chan, D.-S., Chan, J.-S., & Kuo, M.-I. (2018). Modelling Condensation and Simulation for Wheat Germ Drying in Fluidized Bed Dryer. PhD Program in Nutrition and Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan, 1-18.
  4. Chuwattanakul, V, & Ard, Eiamsa (2019). Hydrodynamics investigation of pepper drying in a swirling fluidized bed dryer with multiple-group twisted tape swirl generators, Volume 13, March 2019, 100389.
  5. Fathurrahman, Syahrul, Nurchayati, Mirmanto, Sukmawaty, & Priyati, A. (2017). Pengaruh Temperatur Dan Kecepatan Udara Terhadap Laju Pengeringan Jagung Pada Alat Fluidized Bed Dryer. Jurusan Teknik Mesin Fakultas Teknik Universitas Mataram, 272-278.
  6. Gagnon, Francis etc (2021). Simple Model and Predictive control of a Pharmaceutical Batch Fluidized Bed Dryer, Volume 54, Issue 3, 2021, pp. 7-12.
  7. Hariyadi, T. (2018). Pengaruh Suhu Operasi terhadap Penentuan Karakteristik Pengeringan Busa Sari Buah Tomat Menggunakan Tray Dryer, pp. 104-113.
  8. Hidayati, N., P, U. D., Ratnawati, & Suherman. (2013). Penerapan Teknologi Fluidized Bed Dryer Dengan Penambahan Zeolit 3a Untuk Meningkatkan Efisiensi Pengeringan Gabah. Jurnal Teknologi Kimia dan Industri, 65-71.
  9. Hovmand, S. (2020). Fluidized bed drying. In Handbook of Industrid Dying.
  10. Howard, J. R. (1983). Fluidzed Beds-Combustion and Applications. London: Applied Science.
  11. Indiani, I. D. (n.d.). Pembuatan Fluidized Bed Dryer untuk Pengeringan Benih Pertanian Secara Semi Batch. Skripsi., Jurusan Teknik Kimia Fakultas Teknik Universitas Sebelas Maret, Surakarta.
  12. Karbassi, A., & Mehdizadeh, Z. (2008). Drying Rough Rice in a Fluidized Bed Dryer. Department of Food Science and Technology, College of Agriculture, Shiraz University, Islamic Republic of Iran, 233-241.
  13. Kosasih, E. A., & Ruhyat, N. (2016). Combination Of Electric Air Heater And Refrigeration System To Reduce Energy Consumption: A Simulation Of Thermodynamic System. Applied Heat Transfer Laboratory, Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Kampus Depok, Depok 16424, Indonesia, 288-295.
  14. Lahming, Rais, M., & Risnawati. (2017). Analisis Kelayakan Teknis Dan Ekonomis Pada Pengeringan Biji Kenari (Canarium Indicum L.) Dengan Menggunakan Alat Pengering Tipe Cabinet Dryer. Jurnal Pendidikan Teknologi Pertanian,pp. 80-92.
  15. Makhsud, A., Mahmuddin, & Riswandi. (2021). Unjuk Kerja Pengering Kakao Tipe Tray Dryer Dengan Mengalirkan Udara Panas Secara Zik-Zak. J-Move: Jurnal Teknik Mesin, 50-56.
  16. Marhaenanto, B., dkk (2015). Penentuan Lama Sangrai Kopi Berdasarkan Variasi Derajat Sangrai Menggunakan Model Warna RGB Pada Pengolahan Citra Digital (Digital Image Processing). Jurnal Agroteknologi Vol. 09 No. 02 (2015), pp. 102-111.
  17. Miranda, R. C., etc (2016). Model Predictive Control of Potassium Chloride Drying by Fluidized Bed Dryer, Volume 46, issue 16, 2013, pp 76-80.
  18. Nusyirwan. (2018). Metode Pengering Gabah Aliran Massa Kontinu Sebagai Pengering Alternatif Pada Musim Penghujan Dengan Sumber Energi Dari Cahaya Lampu Mono Kromatis. Metal: Jurnal Sistem Mekanik Dan Termal, 47-55.
  19. Oliver Roseberry, Marc, etc (2020). Monitoring the Moisture Content in Pharmaceutical Batch Fluidized Bed Dryers Using Observer-Based Soft Sensors, Volume 53, Issue 2, 2020, pp. 12056-12061.
  20. P, S., Shingare, & Thorta, B. N. (2014). Fluidzed Bed Drying of Sprouted Wheat (Triticum aestivum). International Journal of Food Engineering, 29-37.
  21. Poos, Tibor & Szabo, Viktor (2017). Application of Mathematical Models Using Volumetric Transfer Coefficient in Fluidized Bed Dryers, Volume 112, March 2017, pp. 374-381.
  22. Rahardjo P. (2012). Panduan Budidaya dan Pengolahan Kopi Arabika dan Robusta. Jakarta : Penerbar Swadaya.
  23. Raihan, M. (2021). Uji Performance Alat Pengering Fluidisasi (Fluidized Bed Dryer) Menggunakan Udara Panas dari Alat Pirolisis pada Pengeringan Padi. 1-5.
  24. Rimpilainen, Ville., M. Heikkinen Lasse., & Vauhkonen, Marko (2012) Moisture Distribution and Hydrodynamics of Wet Granules During Fluidized Bed Drying Characterized With Volumetric Electrical Capacitance Tomography (2012).
  25. Ruhyat, N. (2016). Heater and Refrigeration System to Reduce Energy Consumption a Simulation of Thermodynamic System.
  26. Ruhyat, N., & E. A. Kosasih (2019). Low Energy-Specific Consumption of Refrigerants For Combination Of Electric Air Heater And Refrigeration System Using Double Condensers: A Simulation Of Thermodynamic System. AIP Conference Proceedings 2062, 020063 (2019).
  27. Ruhyat, N., dkk (2018). Combination System of Spray Dryer and Low Evaporator Temperature Refrigeration For Drying Vitamine B1. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences ISSN: 2289-7879.
  28. Sary, R. (2016). Kaji Eksperimental Pengeringan Biji Kopi Dengan Menggunakan Sistem Konveksi Paksa. Jurnal polimesin (ISSN: 1693-5462) Volume 14 Nomor 2 (2016), pp. 13-18.
  29. Shingare, P. Shymala, & N. Bhaskar Thorat (2012). Fluidized Bed Drying of Sprouted Wheat (Triticum aestivum). International Journal of Food Engineering (2014), pp. 29-37.
  30. Singh, Pavitra., Mahanta, Pinakeswar., & Kalita, Pankaj (2020) Numerical Study on the Gas-Solid Hydrodynamics and Heat Transfer in a Rotating Fluidized Bed Dryer with Static Geometry Dryer, Volume 153, June 2020, 119666.
  31. Surjosatyo, A. (1998). Fluidzed Bed Incineration of Palm Shell & Oil Sludge Waste. Program Magister Engineering, Universitas Teknologi Malaysia.
  32. Syahrul, S., Mirmanto, M., Ramdhoni, R., & Sukmawatu, S. (2017). Pengaruh Kecepatan Udara dan Massa Gabah Terhadap Kecepatan Pengeringan Gabah Menggunakan pengering Terfluidisasi. Dinamika Teknik Mesin, 54-59.
  33. Syahrul, S., Romdhani, R., & Mirmanto, M. (2016). Pengaruh Variasi Kecepatan Udara dan Massa Bahan Terhadap Waktu Pengeringan Jagung Pada Alat Fluidized Bed. Teknik Mesin, Fakultas Teknik, Universitas Mataram, 119-126.
  34. Wu, Kai etc (2018). Effect of Moisture Content and Length of Flexible Filamentous Particles on Cluster Characteristics in a Fluidized Bed Dryer, Volume 136, August 2018, pp. 403-416.
  35. Yogendrasasidhar, D & Pydi Setti, Y (2018). Experimental Studies and Thin Layer Modeling of Pearl Millet Using Continous Multistage Fluidized Bed Dryer Staged Externlly (2019), Volume 22, Issue 2, April 2019, pp. 428-438.
  36. Yogendrasasidhar, D. & Y. P. Setty,(2019). Experimental studies and thin layer modeling of pearl millet using continuous multistage fluidized bed dryer staged externally. Engineering Science and Technology, an International Journal 22 (2019), pp.428-438.
  37. Zhu, Xianglu. Etc (2021). Application of Ultrasound to Enhance Fluidized Bed Drying of Ascophyllum Nodosum: Drying Kinetics and Product Quality Assessment (2021), Volume 70, January 2021, 105298.