Main Article Content

Abstract

The brown alga has bioactive alginate and fucoidan, a potential for raw materials the biorefinery industry with core processing of fucoidan and alginate extraction. The research on sequential biorefinery of fucoidan and alginate was conducted in conventional and hydrothermal methods using a smart pressure-cooker, but the yield of fucoidan is low. The improvement was carried out by extracting fucoidan and alginate using microwave-assisted extraction (MAE). This study aimed  to obtain the MAE processing conditions that produced the maximum yield of fucoidan and alginate. The factorial design of 2k was used to determine the effect of MAE processing conditions, i.e.  temperature, time, and alga/water ratio on fucoidan and alginate yields. The parameters observed were fucoidan and alginate yield. Data analysis and prediction of first-order model and model accuracy was a regression modelling using a design expert program. The result showed that the elevate of temperature MAE processing to 80 oC,for 20 minutes, and alga/water ratio of 2:20 (w/v) increased fucoidan (4.5%) and alginate (40.6%)  yield, but it decreased the yield at 100 oC, for 30 minute, and alga/water ratio of 3:30 (w/v). The equation of the first-order model was quadratic, by wich the model test in curvature was found significant at α=0.05. The MAE sequential biorefinery extraction improved fucoidan and alginate yield and had a potential efficiency for commercialization. The maximum response of fucoidan and alginate yield was obtained from a MAE sequential biorefinery at 80 oC,for 20 minutes,and alga/water ratio 2:20 (w/v); further research is needed to optimizing the process.

Keywords

Alginate; Biorefinery; Fucoidan; Microwave-Assisted Extraction; Sargassum Cristaefolium

Article Details

How to Cite
Sugiono, S., Taufiq Hidayat, M., Alrosyidi, F., Nur Abadi, A., Anam, K., Zannuba, S., Taufiky, A., Hoiriyah, E., & Nugroho, M. (2022). Microwave-Assisted Extraction in A Sequential Biorefinery of Alginate and Fucoidan From Brown Alga Sargassum Cristaefolium. Food Science and Technology Journal (Foodscitech), 96-105. https://doi.org/10.25139/fst.vi.4976

References

  1. Ale, M. T., Mikkelsen, J. D., & Meyer, A. S. (2012). Designed optimization of a single-step extraction of fucose-containing sulfated polysaccharides from Sargassum sp . J Appl Phycol, 24, 715–723. https://doi.org/10.1007/s10811-011-9690-3
  2. Ardalan, Y., Jazini, M., & Karimi, K. (2018). Sargassum angustifolium brown macroalga as a high potential substrate for alginate and ethanol production with minimal nutrient requirement. Algal Research, 36(February), 29–36. https://doi.org/10.1016/j.algal.2018.10.010
  3. Chen, X. Q., Liu, Q., Jiang, X. Y., & Zeng, F. (2005). Microwave-assisted extraction of polysaccharides from solanum nigrum. Journal of Central South University of Technology (English Edition), 12(5), 556–560. https://doi.org/10.1007/s11771-005-0122-x
  4. Dobrinčić, A., Balbino, S., Zorić, Z., Pedisić, S., Kovačević, D. B., Garofulić, I. E., & Dragović-Uzelac, V. (2020). Advanced technologies for the extraction of marine brown algal polysaccharides. Marine Drugs, 18(3). https://doi.org/10.3390/md18030168
  5. Fertah, M., Belfkira, A., Dahmane, E. M., Moha, T., Brouillette, F., & A. (2014). Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arabian Journal of Chemistry, 1–8. https://doi.org/10.1016/j.arabjc.2014.05.003
  6. Gaspersz, V. (1992). Metode Perancangan Percobaan. Armico, Bandung.
  7. Jung, K. A., Lim, S. R., Kim, Y., & Park, J. M. (2013). Potentials of macroalgae as feedstocks for biorefinery. Bioresource Technology, 135, 182–190. https://doi.org/10.1016/j.biortech.2012.10.025
  8. Kadam, S. U., Tiwari, B. K., Smyth, T. J., & Donnell, C. P. O. (2015). Ultrasonics Sonochemistry Optimization of ultrasound assisted extraction of bioactive components from brown seaweed Ascophyllum nodosum using response surface methodology. Ultrasonics - Sonochemistry, 23, 308–316. https://doi.org/10.1016/j.ultsonch.2014.10.007
  9. Leonelli, C., & Mason, T. J. (2010). Microwave and ultrasonic processing: Now a realistic option for industry. Chemical Engineering and Processing: Process Intensification, 49(9), 885–900. https://doi.org/10.1016/j.cep.2010.05.006
  10. Lorbeer, A. J., Lahnstein, J., Bulone, V., Nguyen, T., & Zhang, W. (2015). Multiple-response optimization of the acidic treatment of the brown alga Ecklonia radiata for the sequential extraction of fucoidan and alginate. Bioresource Technology, 197, 302–309. https://doi.org/10.1016/j.biortech.2015.08.103
  11. Moebus, K., Siepmann, J., & Bodmeier, R. (2012). European Journal of Pharmaceutical Sciences Novel preparation techniques for alginate – poloxamer microparticles controlling protein release on mucosal surfaces. European Journal of Pharmaceutical Sciences, 45(3), 358–366. https://doi.org/10.1016/j.ejps.2011.12.004
  12. Montgomery, Dauglas. (2005). Response surface methods and designs. Wiley, New York.
  13. Montgomery, Douglas. (2017). Design and Analysis of Experiments. In Wiley (9th ed.). Wiley, New York. https://lccn.loc.gov/2017002355
  14. Nurhidayati, L., Fitriaini, Y., & Abdillah, S. (2020). Sifat Fisikokimia dan Aktivitas Antioksidan Crude Fukoidan Hasil Ekstraksi dari Sargassum cinereum ( Physicochemical Properties and Antioxidant Activities of Crude Fucoidan extracted from Sargassum cinereum ). 18(1), 68–74.
  15. Quitain, A. T., Kai, T., Sasaki, M., & Goto, M. (2013). Microwave − Hydrothermal Extraction and Degradation of Fucoidan from Supercritical Carbon Dioxide Deoiled Undaria pinnati fi da. Industrial & Engineering Chemistry Research, 52, 7940–7946.
  16. Rioux, L., Turgeon, S. L., & Beaulieu, M. (2007). Characterization of polysaccharides extracted from brown seaweeds. Carbohydrate Polymers, 69, 530–537. https://doi.org/10.1016/j.carbpol.2007.01.009
  17. Rodriguez-Jasso, R. M., Mussatto, S. I., Pastrana, L., Aguilar, C. N., & Teixeira, J. A. (2011). Microwave-assisted extraction of sulfated polysaccharides (fucoidan) from brown seaweed. Carbohydrate Polymers, 86(3), 1137–1144. https://doi.org/10.1016/j.carbpol.2011.06.006
  18. Silva, M., Gomes, F., Oliveira, F., Morais, S., & Delerue-matos, C. (2015). Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment. 9(1), 30–33.
  19. Sinurat, E., & Kusumawati, R. (2017). Optimasi Metode Ekstraksi Fukoidan dari Rumput Laut Cokelat Sargassum binderi Sonder. Jurnal Pascapanen Dan Bioteknologi Kelautan Dan Perikanan, 12(2), 125–134. https://doi.org/10.15578/jpbkp.v12i2.388
  20. Skriptsova, A. V. (2016). Seasonal variations in the fucoidan content of brown algae from Peter the Great Bay, Sea of Japan. Russian Journal of Marine Biology, 42(4), 351–356. https://doi.org/10.1134/S1063074016040106
  21. Sugiono, Widjanarko, S. B., & Soehono, L. A. (2014). Extraction Optimization by Response Surface Methodology and Characterization of Fucoidan from Brown Seaweed Sargassum polycystum. International Journal of ChemTech Research, 6(1), 195–205. http://sphinxsai.com/2014/ChemTech/JM14CT1_50/CT=23(195-205)JM14.pdf:
  22. Sugiono, S., & Ferdiansyah, D. (2019). Biorefinery Sequential Extraction of Alginate by Conventional and Hydrothermal Fucoidan from the Brown Alga, Sargassum cristaefolium. Bioscience Biotechnology Research Communication, 12(4), 894–903. https://doi.org/10.21786/bbrc/12.4/9
  23. Sugiono, S., & Ferdiansyah, D. (2020). Biorefinery for sequential extraction of fucoidan and alginate from brown alga Sargassum cristaefolium. Carpathian Journal of Food Scince and Technology, 12(2), 88–99. https://doi.org/https://doi.org/10.34302/crpjfst/2020.12.2.9
  24. Trica, B., Delattre, C., Gros, F., Ursu, A. V., Dobre, T., Djelveh, G., Michaud, P., & Oancea, F. (2019). Extraction and Characterization of Alginate from an Edible Brown Seaweed (Cystoseira barbata) Harvested in the Romanian Black Sea. Marine Drugs, 17(7). https://doi.org/10.3390/md17070405
  25. Wang, J., Zhang, J., Zhao, B., Wang, X., Wu, Y., & Yao, J. (2010). A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method: Molecule weight and antioxidant activities evaluation. Carbohydrate Polymers, 80(1), 84–93. https://doi.org/10.1016/j.carbpol.2009.10.073