PERBANDINGAN HASIL ANALISIS TEKNIK DATA MINING “METODE DECISION TREE, NAIVE BAYES, SMO DAN PART” UNTUK MENDIAGNOSA PENYAKIT DIABETES MELLITUS
Abstract
References
[2] Trihon dan N. Mboi, “Riset Kesehatan Dasar,” Badan Penelit. Dan Pengemb. Kesehat. Kementeri. Kesehat. RI, hlm. 304, 2013.
[3] E. Shakibazadeh, B. Larijani, D. Shojaeezadeh, A. Rashidian, M. Forouzanfar, dan L. Bartholomew, “Patients’ Perspectives on Factors that Influence Diabetes Self-Care,” Iran. J. Public Health, vol. 40, no. 4, hlm. 146–158, Des 2011.
[4] J. E. Shaw, R. A. Sicree, dan P. Z. Zimmet, “Global estimates of the prevalence of diabetes for 2010 and 2030,” Diabetes Res. Clin. Pract., vol. 87, no. 1, hlm. 4–14, Jan 2010.
[5] L. Guariguata, T. Nolan, J. beagley, U. Linnenkamp, dan olivier Jacqmain, Ed., IDF Diabetes Atlas Sixth edition, 6 ed. International Diabetes Federation, 2013.
[6] Bustam, Epidemologi Penyakit Tidak Menular. Jakarta: PT. Rineka Cipta, 2009.
[7] Perkeni, Konsensus Pengelolaan dan Pencegahan Diabetes Melitus Tipe 2. Perkumpulan Endokrinologi Indonesia, 2011.
[8] N. Chu, L. Ma, J. Li, P. Liu, dan Y. Zhou, “Rough set based feature selection for improved differentiation of traditional Chinese medical data,” dalam 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, China, 2010, hlm. 2667–2672.
[9] I. P. D. Lesmana, “Perbandingan Kinerja Decision Tree J48 dan ID3 Dalam Pengklasifikasian Diagnosis Penyakit Diabetes Mellitus,” vol. 2, no. 2, hlm. 10, 2012.
[10] P. Giudici dan S. Figini, Applied Data Mining for Business and Industry. Chichester, UK: John Wiley & Sons, Ltd, 2009.
[11] T. Zheng dkk., “A machine learning-based framework to identify type 2 diabetes through electronic health records,” Int. J. Med. Inf., vol. 97, hlm. 120–127, Jan 2017.
[12] D. Sisodia dan D. S. Sisodia, “Prediction of Diabetes using Classification Algorithms,” Procedia Comput. Sci., vol. 132, hlm. 1578–1585, 2018.
[13] E. S. Kundari, “Perbandingan Kinerja Metode Naive Bayes dan C4.5 Dalam Pengklasifikasian Penyakit Diabetes Melitus di Rumah Sakit Kumala Siwi Kudus,” hlm. 8.
[14] M. Maniruzzaman dkk., “Comparative approaches for classification of diabetes mellitus data: Machine learning paradigm,” Comput. Methods Programs Biomed., vol. 152, hlm. 23–34, Des 2017.
[15] J. A. Putra dan A. L. Akbar, “Klasifikasi Pengidap Diabetes Pada Perempuan Menggunakan Penggabungan Metode Support Vector Machine dan K-Nearest Neighbour,” vol. 1, no. 2, hlm. 6, 2016.
[16] M. Alehegn, R. Joshi, dan D. P. Mulay, “Analysis and Prediction of Diabetes Mellitus using Machine Learning Algorithm,” hlm. 8.
[17] F. Gorunescu, “Data Mining (Intelligent Systems Reference Library, 12),” vol. 12, hlm. 370, 2011.
[18] I. H. Witten dan E. Frank, Data Mining: Practical Machine Learning Tools and Techniques. Elsevier, 2011.
Copyright (c) 2019 Nurahman ., Prihandoko .
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.