Aplikasi Data Mining Pada Analisis Financial Distress Model Altman z-score Untuk Memprediksi Potensi Kebrangkutan Pada Industri Properti Go-Public Di Indonesia


Abstract
References
Purnandam, Amiyatosh. 2008. Financial Distress And Coorporate Risk Management : Theory And Evidence. Journal Of Financial Economic 87. pp 706-739
Hammouda, Khaled. A Comparative Studi Of Data Klastering Techniques. Journal Universitas Of Waterloo. Ontario. Canada
Firdausi,Nabiladkk. Analisi Financial Distress Dengan Pendekatan Data Mining Pada Industri Manufaktur Go Public Di Indonesia. Jurnal ITS. Surabaya
Febrianti,Fitria. Hafiyussholeh. Ahmad Hanif Ashar. 2016. Perbandingan Pengkluateran Data Iris Menggunakan Metode K-Means Dan Fuzzy C-Means. Jurnal Mantik. Surabaya
Toto, Prihadi . 2011. Analisis Laporan Keuangan Teori Dan Aplikasi ;332. Jakarta. Ppm.
Toto, Prihadi . 2011. Analisis Laporan Keuangan Teori Dan Aplikasi. Jakarta. Ppm.
Sawira, Agnes. 2004. Analisis Kinerja Keuangan Dan Perencanaan Keuangan 6 Perusahaan. Jakarta: PT. Gramedia Pustaka Utama
Toto, Prihadi . 2011. Analisis Laporan Keuangan Teori Dan Aplikasi ;336. Jakarta. Ppm.
Adnan dan Kurniasih. 2005. Tingkat Perusahaan Untuk Memprediksi Potensi Kebangkrutan Dengan Pendekatan Altman. Jurnal Ekonomi Bisnis
Kusumadewi, Sri. Purnomo, Hadi. 2010.Aplikasi Logika Fuzzy Untuk Pendukung Keputusan Eds.2.Yogyakarta. Graha Ilmu
Kusumadewi, Sri hartati. 2006. Neuro fuzzy : integrasi sistem fuzzy dan jaringan syaraf. Yogyakarta. Graha ilmu
Prasetyo,Eko. 2014. (Suhendra, 2015)Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab. Andi Yogyakarta.
Prasetyo,Eko. 2014. (Suhendra, 2015)Data Mining Mengolah Data Menjadi Informasi Menggunakan Matlab. Andi Yogyakarta.
Copyright (c) 2019 Billy Montolalu

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.