Modeling of Convolutional Neural Network Architecture for Recognizing The Pandava Mask

Andi Sanjaya, Endang Setyati, Herman Budianto

Abstract


This research was conducted to observe the use of architectural model Convolutional Neural Networks (CNN) LeNEt, which was suitable to use for Pandava mask objects. The Data processing in the research was 200 data for each class or similar with 1000 trial data. Architectural model CNN LeNET used input layer 32x32, 64x64, 128x128, 224x224 and 256x256. The trial result with the input layer 32x32 succeeded, showing a faster time compared to the other layer. The result of accuracy value and validation was not under fitted or overfit. However, when the activation of the second dense process as changed from the relu to sigmoid, the result was better in sigmoid, in the tem of time, and the possibility of overfitting was less. The research result had a mean accuracy value of 0.96.

Keywords


classification; CNN; lenet; relu; activation; sigmoid activation

Full Text:

PDF

References


D. Qu, Z. Huang, Z. Gao, Y. Zhao, X. Zhao, and G. Song, “An Automatic System for Smile Recognition Based on CNN and Face Detection,” 2018 IEEE Int. Conf. Robot. Biomimetics, ROBIO 2018, pp. 243–247, 2018, doi: 10.1109/ROBIO.2018.8665310.

S. Sharma, K. Shanmugasundaram, and S. K. Ramasamy, “FAREC - CNN based efficient face recognition technique using Dlib,” Proc. 2016 Int. Conf. Adv. Commun. Control Comput. Technol. ICACCCT 2016, no. 978, pp. 192–195, 2017, doi: 10.1109/ICACCCT.2016.7831628.

R. He, S. Member, X. Wu, Z. Sun, and T. Tan, “Wasserstein CNN : Learning Invariant Features for NIR-VIS Face Recognition,” vol. 14, no. 8, pp. 1–11, 2017.

C. Ding and D. Tao, “Trunk-Branch Ensemble Convolutional Neural Networks for Video-based Face Recognition,” no. X, pp. 1–14, 2017.

H. Zhang, Z. Qu, and L. Yuan, “A Face Recognition Method Based on LBP Feature for CNN,” pp. 544–547, 2017.

M. Y. W. Teow, “Understanding Convolutional Neural Networks Using A Minimal Model for Handwritten Digit Recognition,” no. October, pp. 167–172, 2017.

S. Albawi and T. A. Mohammed, “Understanding of a Convolutional Neural Network,” no. April 2018, 2017, doi: 10.1109/ICEngTechnol.2017.8308186.

F. Ertam, “Data Classification with Deep Learning using Tensorflow,” no. October, 2017, doi: 10.1109/UBMK.2017.8093521.

T. Septianto, E. Setyati, and J. Santoso, “Model CNN LeNet dalam Rekognisi Angka Tahun pada Prasasti Peninggalan Kerajaan Majapahit,” vol. 6, no. April, pp. 106–109, 2018, doi: 10.14710/jtsiskom.6.3.2018.106-109.

S. S. Ahranjany, F. Razzazi, and M. H. Ghassemian, “A very high accuracy handwritten character recognition system for Farsi/Arabic digits using convolutional neural networks,” Proc. 2010 IEEE 5th Int. Conf. Bio-Inspired Comput. Theor. Appl. BIC-TA 2010, pp. 1585–1592, 2010, doi: 10.1109/BICTA.2010.5645265.

T. I. Saputra, F. Fauziah, and N. Hayati, “Implementasi Discrete Wavelet Transform Pada Aplikasi Kompresi Citra Medis,” J. InfomediaTeknik Inform. Multimed. Jar., vol. 4, no. 2, pp. 101–107, 2020, doi: 10.30811/JIM.V4I2.1574.

I. Riadi, R. Umar, and F. D. Aini, “Analisis Perbandingan Detection Traffic Anomaly Dengan Metode Naive Bayes Dan Support Vector Machine (Svm),” Ilk. J. Ilm., vol. 11, no. 1, pp. 17–24, 2019, doi: 10.33096/ilkom.v11i1.361.17-24.

K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biol. Cybern., vol. 36, no. 4, pp. 193–202, 1980, doi: 10.1007/BF00344251.

A. Carruthers and J. Carruthers, “Handwritten Digit Recognition with a Back-Propagation Network,” Dermatol. Surg., vol. 39, no. 1 Pt 2, p. 149, 2013, doi: 10.1111/dsu.12130.

I. W. S. E. Putra, A. Y. Wijaya, and R. Soelaiman, “Klasifikasi Citra Menggunakan Convolutional Neural Network ( Cnn ) Pada Caltech 101 Image Classfication Using Convolution Neural Network ( Cnn ) on Caltech 101,” Inst. Teknol. Sepuluh Novemb., vol. 5, no. 1, pp. 1–76, 2016.

H. Darmanto, “Pengenalan Spesies Ikan Berdasarkan Kontur Otolith,” Joined J., vol. 2, 2019.




DOI: http://dx.doi.org/10.25139/inform.v0i1.2740

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Andi - Sanjaya

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

____________________________________________________________
INFORM: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi
ISSN 2502-3470 (Print) | 2581-0367 (Online)
Published By Universitas Dr. Soetomo
Managed By Program Studi Teknik Informatika, Fakultas Teknik, Universitas Dr. Soetomo
Address Jl. Semolowaru no 84, Surabaya, 60118, (031) 5944744
Website https://ejournal.unitomo.ac.id/index.php/inform
email [email protected]

Inform is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View Inform Stats

Inform is supervised by Relawan Jurnal Indonesia.