Model Warna HSCbCrAB untuk Deteksi Kulit Menggunakan PCA-kNN

Tri Afirianto, Faizatul Amalia

Abstract


Deteksi kulit merupakan suatu proses untuk menentukan suatu wilayah apakah termasuk kulit atau bukan kulit. Beberapa kamera digital menghasilkan citra RGB. Dalam berbagai kasus deteksi kulit dilakukan transformasi dari RGB ke ruang warna lainnya, seperti HSV, YCbCr, dan CIELAB. Beberapa ruang warna memiliki dua komponen yang terpisah, yaitu komponen luminan dan krominan, sedangkan warna kulit manusia lebih sering berada pada komponen krominan. Dalam paper ini, kami melakukan penelitian deteksi kulit menggunakan komponen krominan dari ruang warna HSV, YCbCr, dan CIELAB, dengan nama HSCbCrAB. Kami menggunakan PCA untuk mengurangi dimensi dank NN sebagai klasifier. Hasil dari penelitian menunjukkan performa yang bagus pada ruang warna HSCbCrAB untuk deteksi kulit

Keywords


deteksi kulit, pca-knn, hsv, ycbcr, cielab

References


P. Kakumanu, S. Makrogiannis, N. Bourbakis, “A survey of skin-color modeling and detection methods”, Pattern Recognition. (2007), 40(3): 1106-1122.

A. Hamdy, M. Elmahdy, M. Elsabrouty, “Face detection using PCA and skin-tone extraction for drowsy driver application”, Proceedings of ITI 5th International Conference on Information and Communications Technology. Cairo. (2007) 35-137.

Y. Ban, S. K. Kim, S. Kim, K. A. Toh, S. Lee, “Face detection based on skin color likelihood”, Pattern Recognition. (2014), 47(4): 1573-1585.

J. S. Lee, Y. M. Kuo, P. C. Chung, E. L. Chen, “Naked image detection based on adaptive and extensible skin color model”, Pattern Recognition. (2007), 40(8): 2261-2270.

F. Nian, T. Li, Y. Wang, M. Xu, J. Wu, “Pornographic image detection utilizing deep convolutional neural networks”, Neurocomputing. (2016), 210: 283-293.

D. González-Ortega, F. J. Díaz-Pernas, M. Martínez-Zarzuela, M. Antón-Rodríguez, J. F. Díez-Higuera, D. Boto-Giralda, “Real-time hands, face and facial features detection and tracking: application to cognitive rehabilitation tests monitoring”, Journal of Network and Computer Applications. (2010), 30(4): 447-466.

S. Omanovic, E. Buza, I. Besic, “RGB ratios based skin detection”, Proceedings of the 37th Information and Communication Technology, Electronics and Microelectronics (MIPRO). Opatija. (2014) 1348-1353.

A. A. Zaidan, N. N. Ahmad, H. A. Karim, M. Larbani, B. B. Zaidan, A. Sali, “Image skin segmentation based on multi-agent learning bayesian and neural network”, Engineering Applications of Artificial Intelligence. (2014), 32: 136-150.

F. Z. Chelali, N. Cherabit, A. Djeradi, “Face recognition system using skin detection in RGB and YCbCr color space”, Proceedings of the 2nd World Symposium on Web Applications and Networking (WSWAN). Sousse. (2015) 1-7.

B. Dhivakar, C. Sridevi, S. Selvakumar, P. Guhan, “Face detection and recognition using skin color”, Proceedings of the 3rd International Conference on Signal Processing, Communication and Networking (ICSCN). Chennai. (2015) 1-7.

R. Khan, A. Hanbury, J. Stöttinger, A. Bais, “Color based skin classification”, Pattern Recognition Letters. (2012), 33(2): 157-163.

K. Liao, G. Liu, L. Xiao, C. Liu, “A sample-based hierarchical adaptive k-Means clustering method for large-scale video retrieval”, Knowledge-Based Systems. (2013), 49: 123-133.

P. Arora, Dr. Deepali, S. Varshney, “Analysis of k-Means and k-Medoids algorithm for big data”, Procedia Computer Science. (2016), 78: 507-512.

W. R. Tan, C. S. Chan, Y. Pratheepan, J. Condell, “A fusion approach for efficient human skin detection”, Proceedings of IEEE Transactions on Industrial Informatics. (2012), 8(1): 138-147.




DOI: http://dx.doi.org/10.25139/ojsinf.v2i2.312

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Tri Afirianto, Faizatul Amalia

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

____________________________________________________________
INFORM: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi
ISSN 2502-3470 (Print) | 2581-0367 (Online)
Published by Pusat Pengelola Jurnal, Universitas Dr. Soetomo
Managed by Program Studi Teknik Informatika, Fakultas Teknik, Universitas Dr. Soetomo
Address Jl. Semolowaru no 84, Surabaya, 60118, (031) 5944744
Website https://ejournal.unitomo.ac.id/index.php/inform
email [email protected]

Inform is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View Inform Stats

Inform is supervised by Relawan Jurnal Indonesia.