Sentiment Analysis on the Shopee Application on Playstore Using the Random Forest Classification Method


Abstract
In analyzing customer or consumer satisfaction with company services, it is essential for companies to find service deficiencies and to know user expectations for the company. This study aims to build sentiment analysis on the Shoppe application on the Google Playstore. The method used includes TF-IDF as text vectorization, Random Forest as a classification model, and Evaluation Matrix as an evaluation model, providing accuracy, precision, recall, and F1-Score. Based on the results of this study, the model we used achieved an accuracy rate of 94%, a precision of 91%, a recall of 91%, and an F1-Score of 93%. The limitations of this study are identifying words in English and regional languages because the corpus module we use is literature, a special Indonesian corpus. In future research, we will try to build a new engine/algorithm and try to add datasets in the hope that the level of accuracy will be even better.
References
Hanafi, R. Widyawati, and A. S. Widowati, "Effect of service quality and online servicescape toward customer satisfaction and loyalty mediated by perceived value," IOP Conf. Ser. Earth Environ. Sci., vol. 704, no. 1, 2021, doi: 10.1088/1755-1315/704/1/012011.
J. A. Josen Limbong, I. Sembiring, K. Dwi Hartomo, U. Kristen Satya Wacana, and P. Korespondensi, "Analisis Klasifikasi Sentimen Ulasan Pada E-Commerce Shopee Berbasis Word Cloud Dengan Metode Naive Bayes Dan K-Nearest Neighbor Analysis of Review Sentiment Classification on E-Commerce Shopee Word Cloud Based With Naïve Bayes and K-Nearest Neighbor Meth," J. Teknol. Inf. dan Ilmu Komput., vol. 9, no. 2, pp. 347–356, 2019, doi: 10.25126/jtiik.202294960.
Nurfaizah, T. Hariguna, and Y. I. Romadon, "The accuracy comparison of vector support machine and decision tree methods in sentiment analysis," J. Phys. Conf. Ser., vol. 1367, no. 1, 2019, doi: 10.1088/1742-6596/1367/1/012025.
Hanafi, N. Suryana, and A. S. Bashari, "Evaluation of e-Service Quality, Perceived Value on Customer Satisfaction and Customer Loyalty: a Study in Indonesia," International Business Management, vol. 11, no. 11. pp. 1892–1900, 2017, [Online]. Available: https://medwelljournals.com/abstract/?doi=ibm.2017.1892.1900.
D. Pratmanto, R. Rousyati, F. F. Wati, A. E. Widodo, S. Suleman, and R. Wijianto, "App Review Sentiment Analysis Shopee Application in Google Play Store Using Naive Bayes Algorithm," J. Phys. Conf. Ser., vol. 1641, no. 1, 2020, doi: 10.1088/1742-6596/1641/1/012043.
J. Y. B. Yin, N. H. M. Saad, and Z. Yaacob, "Exploring Sentiment Analysis on E-Commerce Business: Lazada and Shopee," TEM J., vol. 11, no. 4, pp. 1508–1519, 2022, doi: 10.18421/TEM114-11.
D. Sánchez, L. Martínez-Sanahuja, and M. Batet, "Survey and evaluation of web search engine hit counts as research tools in computational linguistics," Inf. Syst., vol. 73, pp. 50–60, 2018, doi: 10.1016/j.is.2017.12.007.
S. Nanda, D. Mualfah, and D. A. Fitri, “Analisis Sentimen Kepuasan Pengguna Terhadap Layanan Streaming Mola Menggunakan Algoritma Random Forest,” no. x, pp. 210–219, 2019.
F. Gunawan, M. A. Fauzi, and P. P. Adikara, “Analisis Sentimen Pada Ulasan Aplikasi Mobile Menggunakan Naive Bayes dan Normalisasi Kata Berbasis Levenshtein Distance (Studi Kasus Aplikasi BCA Mobile),” Syst. Inf. Syst. Informatics J., vol. 3, no. 2, pp. 1–6, 2017, doi: 10.29080/systemic.v3i2.234.
S. Watmah, S. Suryanto, and M. Martias, “Komparasi Metode K-NN, Support Vector Machine Dan Random Forest Pada E-Commerce Shopee,” INSANtek, vol. 2, no. 1, pp. 15–21, 2021, doi: 10.31294/instk.v2i1.419.
S. W. Iriananda, R. P. Putra, and K. S. Nugroho, “Analisis Sentimen Dan Analisis Data Eksploratif Ulasan Aplikasi Marketplace Google Playstore,” 4th Conf. Innov. Appl. Sci. Technol. (CIASTECH 2021), no. Ciastech, pp. 473–482, 2021.
K. Hantoro, D. Handayani, and S. Setiawati, “A Implementation of Text Mining In Sentiment Analysis of Shopee Indonesia Using SVM,” vol. 3, no. 2, pp. 115–120, 2022.
H. Kaur, S. U. Ahsaan, B. Alankar, and V. Chang, "A Proposed Sentiment Analysis Deep Learning Algorithm for Analyzing COVID-19 Tweets," Inf. Syst. Front., vol. 23, no. 6, pp. 1417–1429, 2021, doi: 10.1007/s10796-021-10135-7.
N. Khasanah, R. Komarudin, N. Afni, Y. I. Maulana, and A. Salim, "Skin Cancer Classification Using Random Forest Algorithm," Sisfotenika, vol. 11, no. 2, p. 137, 2021, doi: 10.30700/jst.v11i2.1122.
H. C. Morama, D. E. Ratnawati, and I. Arwani, “Analisis Sentimen berbasis Aspek terhadap Ulasan Hotel Tentrem Yogyakarta menggunakan Algoritma Random Forest Classifier,” vol. 6, no. 4, pp. 1702–1708, 2022.
W. Nugraha, “Prediksi Penyakit Jantung Cardiovascular Menggunakan Model Algoritma Klasifikasi,” J. Sigmata, vol. 9, no. 2, pp. 78–84, 2021.
U. Erdiansyah, A. Irmansyah Lubis, and K. Erwansyah, “Komparasi Metode K-Nearest Neighbor dan Random Forest Dalam Prediksi Akurasi Klasifikasi Pengobatan Penyakit Kutil,” J. Media Inform. Budidarma, vol. 6, no. 1, p. 208, 2022, doi: 10.30865/mib.v6i1.3373.
R. Kosasih and A. Alberto, "Sentiment analysis of game product on shopee using the TF-IDF method and naive bayes classifier," Ilk. J. Ilm., vol. 13, no. 2, pp. 101–109, 2021, doi: 10.33096/ilkom.v13i2.721.101-109.
S. Sudianto, A. D. Sripamuji, I. Ramadhanti, R. R. Amalia, J. Saputra, and B. Prihatnowo, “Penerapan Algoritma Support Vector Machine dan Multi-Layer Perceptron pada Klasisifikasi Topik Berita,” vol. 11, no. 2, pp. 84–91, 2022.
D. Theckedath and R. R. Sedamkar, "Detecting Affect States Using VGG16, ResNet50 and SE-ResNet50 Networks," SN Comput. Sci., vol. 1, no. 2, pp. 1–7, 2020, doi: 10.1007/s42979-020-0114-9.
N. Khoiruzzaman, R. D. Ramadhani, and A. Junaidi, "Hasil Klasifikasi Algoritma Backpropagation dan K-Nearest Neighbor pada Cardiovascular Disease," J. Dinda Data Sci. Inf. Technol. Data Anal., vol. 1, no. 1, pp. 17–27, 2021, doi: 10.20895/dinda.v1i1.141.
Copyright (c) 2023 Muhammad Rusdi Rahman, Ahmad Febri Diansyah, Hanafi Hanafi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.