Sentiment Analysis on the Impact of MBKM on Student Organizations Using Supervised Learning with Smote to Handle Data Imbalance


Abstract
Recently, there has been a decline in student interest in joining organizations. One of the causes is the MBKM program "Merdeka Belajar Kampus Merdeka". With this program from the government, more and more students are interested in entering because it is considered more profitable. Responses regarding this were conveyed by students through questionnaires, Twitter crawling, and YouTube comments. The data obtained was 1,770 (negative, positive, and neutral labeling) using Sastrawi, Nazief & Adriani, and Arifin Setiono stemming. There is an imbalance of data in labeling, so it is necessary to do SMOTE to balance the data. The algorithms used in the research focus on modeling the Naïve Bayes Classifier, Support Vector Machine, and Decision Tree with the split random method, with the best results using Support Vector Machine. Of the three algorithms, the highest results were obtained from the results of Arifin Setiono's data setmming, using a Support Vector Machine with 91% accuracy, obtained from 90% training data and 10% testing.
References
“Peran dan Inovasi Generasi Milenial dalam Mewujudkan Indonesia Emas 2045.pdf.”
A. A. Fauzi and T. Pahlevi, “Analisis Hubungan Keaktifan Berorganisasi Terhadap Hasil Prestasi Akademik Mahasiswa Fakultas Ekonomi Universitas Negeri Surabaya,” J. Pendidik. Adm. Perkantoran JPAP, vol. 8, no. 3, pp. 449–457, Jul. 2020, doi: 10.26740/jpap.v8n3.p449-457.
F. Fauziannor, “Faktor-faktor yang mempengaruhi minat mahasiswa dalam berorganisasi di kampus STIE Pancasetia,” Fair Value J. Ilm. Akunt. Dan Keuang., vol. 4, no. 8, pp. 3520–3533, Mar. 2022, doi: 10.32670/fairvalue.v4i8.1455.
"Hidayah et al. - 2022 - Does reviving organizations serve an advantage for.pdf."
H. Abdullah, F. Aziz, B. Firmansyah, K. Nabilah, and M. R. Adhani, “PENGARUH ORGANISASI MAHASISWA PENDIDIKAN PARIWISATA TERHADAP PRESTASI BELAJAR PADA ERA MERDEKA BELAJAR KAMPUS MERDEKA,” vol. 6, no. 1, 2023.
“Program MBKM Tinggi Peminat, Bagaimana Dampak Regenerasi Organisasi?” Accessed: November 27, 2023. [Online]. Available: https://www.cahunsoed.com/2022/09/program-mbkm-tinggi-peminat-bagaimana.html
F. S. Mufidah, S. Winarno, F. Alzami, E. D. Udayanti, and R. R. Sani, “Analisis Sentimen Masyarakat Terhadap Layanan Shopeefood Melalui Media Sosial Twitter Dengan Algoritma Naïve Bayes Classifier,” JOINS J. Inf. Syst., vol. 7, no. 1, pp. 14–25, May 2022, doi: 10.33633/joins.v7i1.5883.
Y. A. Singgalen, “Analisis Performa Algoritma NBC, DT, SVM dalam Klasifikasi Data Ulasan Pengunjung Candi Borobudur Berbasis CRISP-DM,” Build. Inform. Technol. Sci. BITS, vol. 4, no. 3, Dec. 2022, doi: 10.47065/bits.v4i3.2766.
A. Rozaq, Y. Yunitasari, K. Sussolaikah, E. R. N. Sari, and R. I. Syahputra, “Analisis Sentimen Terhadap Implementasi Program Merdeka Belajar Kampus Merdeka Menggunakan Naïve Bayes, K-Nearest Neighboars Dan Decision Tree,” J. MEDIA Inform. BUDIDARMA, vol. 6, no. 2, p. 746, Apr. 2022, doi: 10.30865/mib.v6i2.3554.
L. A. Pramesti and N. Pratiwi, “Analisis Sentimen Twitter Terhadap Program MBKM Menggunakan Decision Tree dan Support Vector Machine,” vol. 4, no. 4, 2023.
A. Rozaq, Y. Yunitasari, K. Sussolaikah, and E. R. N. Sari, “Sentiment Analysis of Kampus Mengajar 2 Toward the Implementation of Merdeka Belajar Kampus Merdeka Using Naïve Bayes and Euclidean Distence Methods,” Int. J. Adv. Data Inf. Syst., vol. 3, no. 1, Jun. 2022, doi: 10.25008/ijadis.v3i1.1233.
M. Nashrullah and D. A. Efrilianda, "Sentiment Analysis of Kampus Merdeka Policy on Twitter Using Support Vector Machine and Naïve Bayes Classifier".
M. Hermansyah, M. F. Firdausi, A. Wahid, and N. A. Prasetyo, “Twitter Sentiment Analysis for Exploring Public Opinion on the Merdeka Belajar-Kampus Merdeka (MBKM) 2023 with the Naïve Bayes Classifier Algorithm”.
"New Study Shows Twitter is the Most Used Social Media Platform Among Journalists," Social Media Today. Accessed: December 29, 2023. [Online]. Available: https://www.socialmediatoday.com/news/new-study-shows-twitter-is-the-most-used-social-media-platform-among-journa/626245/
P. Suciu, "YouTube Remains The Most Dominant Social Media Platform," Forbes. Accessed: December 29, 2023. [Online]. Available: https://www.forbes.com/sites/petersuciu/2021/04/07/youtube-remains-the-most-dominant-social-media-platform/
S. Riadi, E. Utami, and A. Yaqin, “Comparison of NB and SVM in Sentiment Analysis of Cyberbullying using Feature Selection,” sinkron, vol. 8, no. 4, pp. 2414–2424, Oct. 2023, doi: 10.33395/sinkron.v8i4.12629.
A. M. Rahat, A. Kahir, and A. K. M. Masum, "Comparison of Naive Bayes and SVM Algorithm based on Sentiment Analysis Using Review Dataset," in 2019 8th International Conference System Modeling and Advancement in Research Trends (SMART), Moradabad, India: IEEE, Nov. 2019, pp. 266–270. doi: 10.1109/SMART46866.2019.9117512.
R. Kusumawati, A. D'arofah, and P. A. Pramana, "Comparison Performance of Naive Bayes Classifier and Support Vector Machine Algorithm for Twitter's Classification of Tokopedia Services," J. Phys. Conf. Ser., vol. 1320, no. 1, p. 012016, Oct. 2019, doi: 10.1088/1742-6596/1320/1/012016.
M. Wongkar and A. Angdresey, "Sentiment Analysis Using Naive Bayes Algorithm Of The Data Crawler: Twitter," in 2019 Fourth International Conference on Informatics and Computing (ICIC), Semarang, Indonesia: IEEE, Oct. 2019, pp. 1–5. doi: 10.1109/ICIC47613.2019.8985884.
L. Ardiani, H. Sujaini, and T. Tursina, “Implementasi Sentiment Analysis Tanggapan Masyarakat Terhadap Pembangunan di Kota Pontianak,” J. Sist. Dan Teknol. Inf. Justin, vol. 8, no. 2, p. 183, Apr. 2020, doi: 10.26418/justin.v8i2.36776.
"Improving the accuracy of text classification using stemming method, a case of non‑formal Indonesian conversation.pdf."
D. Soyusiawaty, A. H. S. Jones, and N. L. Lestariw, "The Stemming Application on Affixed Javanese Words by using Nazief and Adriani Algorithm," IOP Conf. Ser. Mater. Sci. Eng., vol. 771, no. 1, p. 012026, Mar. 2020, doi: 10.1088/1757-899X/771/1/012026.
D. Mustikasari, I. Widaningrum, R. Arifin, and W. H. E. Putri, "Comparison of Effectiveness of Stemming Algorithms in Indonesian Documents:," presented at the 2nd Borobudur International Symposium on Science and Technology (BIS-STE 2020), Magelang, Indonesia, 2021. doi: 10.2991/aer.k.210810.025.
H. Liu, X. Chen, and X. Liu, "A Study of the Application of Weight Distributing Method Combining Sentiment Dictionary and TF-IDF for Text Sentiment Analysis," IEEE Access, vol. 10, pp. 32280–32289, 2022, doi: 10.1109/ACCESS.2022.3160172.
R. Wati, S. Ernawati, and H. Rachmi, “Pembobotan TF-IDF Menggunakan Naïve Bayes pada Sentimen Masyarakat Mengenai Isu Kenaikan BIPIH,” J. Manaj. Inform. JAMIKA, vol. 13, no. 1, pp. 84–93, Apr. 2023, doi: 10.34010/jamika.v13i1.9424.
Imamah and F. H. Rachman, "Twitter Sentiment Analysis of Covid-19 Using Term Weighting TF-IDF And Logistic Regresion," in 2020 6th Information Technology International Seminar (ITIS), Surabaya, Indonesia: IEEE, Oct. 2020, pp. 238–242. doi: 10.1109/ITIS50118.2020.9320958.
D. Dablain, B. Krawczyk, and N. V. Chawla, "DeepSMOTE: Fusing Deep Learning and SMOTE for Imbalanced Data," IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 9, pp. 6390–6404, Sep. 2023, doi: 10.1109/TNNLS.2021.3136503.
"Raghuwanshi and Shukla - 2021 - Classifying imbalanced data using SMOTE based clas.pdf."
Y. A. Singgalen, “Analisis Sentimen Top 10 Traveler Ranked Hotel di Kota Makassar Menggunakan Algoritma Decision Tree dan Support Vector Machine,” Agustus 2023.
"A Comparative Review of SMOTE and ADASYN in Imbalanced Data Classification.pdf."
A. Deolika, K. Kusrini, and E. T. Luthfi, “ANALISIS PEMBOBOTAN KATA PADA KLASIFIKASI TEXT MINING,” J. Teknol. Inf., vol. 3, no. 2, p. 179, Dec. 2019, doi: 10.36294/jurti.v3i2.1077.
S. Y. Pangestu, Y. Astuti, and L. D. Farida, “ALGORITMA SUPPORT VECTOR MACHINE UNTUK KLASIFIKASI SIKAP POLITIK TERHADAP PARTAI POLITIK INDONESIA,” vol. 3, no. 1, 2019.
C. A. Sari, A. Sukmawati, R. P. Aprilli, P. S. Kayaningtias, and N. Yudistira, “PERBANDINGAN METODE NAÏVE BAYES, SUPPORT VECTOR MACHINE DAN DECISION TREE DALAM KLASIFIKASI KONSUMSI OBAT,” 2022.
D. Nurmadewi, M. Amaliah, H. Hanifah, U. B. Purwanti, M. S. Arum, and N. W. Kusuma, "Sentiment Analysis of Jokowi's Candidate Discourse in Three Periods using the Naïve Bayes Method," SISTEMASI, vol. 12, no. 1, p. 166, Jan. 2023, doi: 10.32520/stmsi.v12i1.2413.
“Hermansyah et al. - Twitter Sentiment Analysis for Exploring Public Op.pdf.”
N. Sevani, A. Setiawan, F. Saputra, R. K. Sali, and O. Sunardi, "Medical Diagnosis System in Healthcare Industry: A Fuzzy Approach," IOP Conf. Ser. Mater. Sci. Eng., vol. 852, no. 1, p. 012149, Jul. 2020, doi: 10.1088/1757-899X/852/1/012149.
Copyright (c) 2024 Lailatul Cahyaningrum, Ardytha Luthfiarta, Mufida Rahayu

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.