Implementation Of Fuzzy Logic to Identify Accident Categories In SMS-Based Two-Wheeled Vehicles

  • Akhmad Fahruzi Electrical Engineering Department, Institut Teknologi Adhi Tama Surabaya
  • Aunurrohman Muharror Institut Teknologi Adhi Tama Surabaya
Abstract views: 85 , PDF downloads: 63
Keywords: Accident Categories, Accelerometer, GPS, Fuzzy Logic, Fuzzy Sugeno, SMS

Abstract

Two-wheeled vehicle is the most popular means of transportation in Indonesia. As a result, it would cause several issues. One of them is an increased possibility of an accident to happen. In the event of an accident, quick aid from the public to the victim can reduce the risk of severe injury suffered by him. The person who provides aid to the injured victim may ask for money from the victim's family whose amount is not proportionate with the severity of the accident. In light of this, a system has been devised to identify and categorize the different types of accidents and send the formation to a family phone number registered electronically. The accident level is categorized using the Sugeno-type fuzzy logic method. The parameters used to differentiate the accident categories are speed, slope, and duration of vehicle braking time. The information is then sent to the registered phone via SMS that contains the accident category and the coordinates of the accident location provided by the GPS Neo 6 module. The algorithm is based on the vehicle's tilt angles, which range from 45(to the right) and -45(to the left). The fuzzy logic then determines the category, which processes and produces the accident category based on the speed and vehicle braking duration parameters. The proposed algorithm in this research will be experimented with using a real motorbike. Based on the experimental results, it has been found that the performance of the fuzzy logic method has an accuracy of 88.89% when determining the category of accident (light or heavy) and the time taken to send the information to the family member via SMS is quite fast.

References

BPS, “Statistik transportasi darat 2014,” Jakarta, 2015.

Korlantas.polri.go.id, “Statistik Laka,” Www.Korlantas.Polri.Go.Id, 2020. https://korlantas.polri.go.id/statistik-laka/ (accessed Apr. 01, 2022).

Dirjen Perhubungan Darat, “Perhubungan Darat Dalam Angka (PDDA) Tahun 2022,” 2023. https://hubdat.dephub.go.id/id/data-informasi-berkala/perhubungan-darat-dalam-angka-pdda-tahun-2022-perhubungan-darat-dalam-angka-pdda-2022/.

Esti Widiyana, “Wali Murid SMPN 6 Surabaya Kena Tipu Rp 84 Juta Modus ‘Anak Kecelakaan,’” Surabaya, Feb. 2023. [Online]. Available: https://www.detik.com/jatim/hukum-dan-kriminal/d-6557115/wali-murid-smpn-6-surabaya-kena-tipu-rp-84-juta-modus-anak-kecelakaan.

E. P. Rindi Nuris Velarosdela, “Polisi Tangkap 3 Tersangka Penipu Bermodus Anak Kecelakaan,” 2019. [Online]. Available: https://megapolitan.kompas.com/read/2019/07/19/18461641/polisi-tangkap-3-tersangka-penipu-bermodus-anak-kecelakaan.

A. Suprayogi, H. Fitriyah, and Tibyani, “Sistem Pendeteksi Kecelakaan Pada Sepeda Motor Berdasarkan Kemiringan Menggunakan Sensor Gyroscope Berbasis Arduino,” J. Pengemb. Teknol. Įnformasį dan Įlmu Komput., vol. 3, no. 3, pp. 3079–3085, 2019.

Titania Nur Alifah, Harianto, and Ira Puspasari, “Rancang Bangun Alat Deteksi Kecelakaan Sepeda Motor Berbasis Exponential Smoothing,” J. Technol. Informatics, vol. 1, no. 2, pp. 108–119, 2020, doi: 10.37802/joti.v2i1.54.

S. Asman, Werman Kasoep, and Nefy Puteri Novani, "Rancang Bangun Sistem Pendeteksi Kecelakaan Dan Tracking Lokasi Mobil Berbasis Android," Chipset, vol. 2, no. 02, pp. 7–14, 2021, doi: 10.25077/chipset.2.02.7-14.2021.

A. Hassan, M. S. Abbas, M. Asif, M. Bin Ahmad, and M. Z. Tariq, "An automatic accident detection system: A hybrid solution," Proc. - 2019 4th Int. Conf. Inf. Syst. Eng. ICISE 2019, pp. 53–57, 2019, doi: 10.1109/ICISE.2019.00018.

M. T. A. Amir and Y. Y. Kerlooza, “Sistem Pendeteksi Kecelakaan Kendaraan Bermotor Menggunakan Arduino Dan Smartphone Android,” Telekontran J. Ilm. Telekomun. Kendali dan Elektron. Terap., vol. 8, no. 2, pp. 105–112, 2021, doi: 10.34010/telekontran.v8i2.4570.

M. M. Islam, A. E. M. Ridwan, M. M. Mary, M. F. Siam, S. A. Mumu, and S. Rana, "Design and Implementation of a Smart Bike Accident Detection System," 2020 IEEE Reg. 10 Symp. TENSYMP 2020, no. June, pp. 386–389, 2020, doi: 10.1109/TENSYMP50017.2020.9230656.

S. Sharma and S. Sebastian, "IoT based car accident detection and notification algorithm for general road accidents," Int. J. Electr. Comput. Eng., vol. 9, no. 5, pp. 4020–4026, 2019, doi: 10.11591/ijece.v9i5.pp4020-4026.

M. Karpagam, A. P. Aakaash, M. Ahmed Ibrahim, E. Egbert Briston, and S. Gautham, "Internet of Things based Automobile Accident Detection System," Proc. 5th Int. Conf. Electron. Commun. Aerosp. Technol. ICECA 2021, pp. 440–444, 2021, doi: 10.1109/ICECA52323.2021.9676131.

A. Mohanty and S. Mahapatra, "A Hardware Prototype Fuzzy Logic based Automatic Accident Detection system in Vehicular Adhoc Network," 2023, [Online]. Available: https://doi.org/10.21203/rs.3.rs-2130570/v1.

A. Fahruzi, A. Yuda Wardaya, and Andy Suryowinoto, "Estimation of Brake Pad Wear Using Fuzzy Logic in Real Time," Inf. J. Ilm. Bid. Teknol. Inf. dan Komun., vol. 8, no. 1, pp. 78–83, 2023, doi: 10.25139/inform.v8i1.5760.

M. Usman, A. Carie, B. Marapelli, H. D. Bedru, and K. Biswas, "A Human-in-the-Loop Probabilistic CNN-Fuzzy Logic Framework for Accident Prediction in Vehicular Networks," IEEE Sens. J., vol. 21, no. 14, pp. 15496–15503, 2021, doi: 10.1109/JSEN.2020.3023661.

R. Jubitra, Rian Aprian; Khana, “Prototipe Sistem Alert Kecelakaan Dengan Sensor Kemiringan Menggunakan Mikrokontroler Berbasis Panggilan Telepon,” Ejournal Kaji. Tek. Elektro, pp. 149–165, 2019.

A. Rhamdani, E. Rakhman, J. Teknik Elektro, and P. Negeri Bandung, “Simulasi Sistem Monitoring dan Notifikasi Kecelakaan Pada Kendaraan Remote Control,” SEMNASTERA (Seminar Nas. Teknol. dan Ris. Ter., vol. 3, no. 0, pp. 104–111, 2021, [Online]. Available: https://semnastera.polteksmi.ac.id/index.php/semnastera/article/view/239.

H. Rahmani, A. Gazali, J. Jarkawi, and M. I. Ramli, “Analisis Hubungan Kecepatan Terhadap Kecelakaan Lalu-Lintas Di Kota Banjarmasin,” J. Indones. Road Saf., vol. 2, no. 1, p. 45, 2019, doi: 10.19184/korlantas-jirs.v2i1.15033.

L. O. M. A. Azdhar Baruddin, “Analisis Pengaruh Kecepatan Terhadap Jarak Dan Waktu Pengereman Pada Mobil Hybrid Urban Kmhe 2018,” J. Tek. Mesin, vol. 9, no. 3, p. 195, 2020, doi: 10.22441/jtm.v9i3.4998.

Published
2024-02-09
How to Cite
Fahruzi, A., & Muharror, A. (2024). Implementation Of Fuzzy Logic to Identify Accident Categories In SMS-Based Two-Wheeled Vehicles. Inform : Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 9(1), 89-94. https://doi.org/10.25139/inform.v9i1.7555
Section
Articles