Unbalanced Timeliness of Financial Reporting Data Classification Using Random Forest with SMOTE

  • Erna Hayati Department of Accounting, Universitas Islam Lamongan
  • Fitri Nurjanah Department of Accounting, Universitas Islam Lamongan
  • Fajriyah Kurnia Laili Department of Accounting, Universitas Islam Lamongan
Abstract views: 117 , PDF downloads: 91
Keywords: Unbalanced, Random Forest, SMOTE, Timeliness of Financial Reporting

Abstract

This study aims to apply the Random Forest method with SMOTE to address unbalanced data on company classifications based on the timeliness of financial reports. The data used are the financial statements of manufacturing companies in the Food and Beverage sector on the IDX from 2014 to 2022. The independent variables used are ROA, CR, DAR, and Size. The results showed that the performance of the Random Forest method after being combined with SMOTE increased compared to before SMOTE. Random Forest's best performance is derived from 60% training and 40% testing. Based on MDA and MDG values, it was found that ROA has the highest level of importance, followed by Size and CR variables. In comparison, DAR is the variable with the lowest level of importance. It means that DAR has a low impact on the timeliness of financial reports.

References

A. M. A. Rahim, I. Y. R. Pratiwi and M. A. Fikri, “Klasifikasi Penyakit Jantung Menggunakan Metode Synthetic Minority Over-Sampling Technique dan Random Forest Clasifier,” Indonesia Journal of Computer Science, vol. 12, pp. 2995-3011, October. 2023.

I. A. Dahlan, “Klasifikasi Cuaca Provinsi DKI Jakarta Menggunakan Algoritma Random Forest dengan Teknik Oversampling,” Jurnal Teknoinfo, vol. 16, pp. 87-92, January. 2022.

B. Biswal and P.K. Biswal, "Robust Classification of Neovascularization Using Random Forest Classifier Via Convoluted Vascular Network," Biomedical Signal Processing and Control, vol. 66, April. 2021.

L. Cahyaningrum, A. Luthfiarta and M. Rahayu, "Sentiment Analysis on the Impact of MBKM on Student Organizations Using Supervised Learning with Smote to Handle Data Imbalanced," Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi, vol. 9, pp. 58-66, January. 2024.

A. A. Khan, O. Chaudhari, and R. Chandra," A Review of Ensemble Learning and Data Augmentation Models for Class Imbalanced Problems: Combination, Implementation and Evaluation," Expert Systems with Applications, vol. 244, pp. 1-29. 2024.

H. Suryono, H. Kuswanto and N. Iriawan," Two-Phase Stratified Random Forest for Paddy Growth Phase Classification: A Case of Imbalanced Data," Sustainability, vol. 14, pp. 1-13. 2022.

N. N. Sholihah, and A. Hermawan, "Implementation of random Forest and SMOTE Methods for Economics Status Classification in Cirebon City," Jurnal Teknik Informatika (JUTIF), vol. 4, pp. 1387-1397, December. 2023.

R. Geetha, S. Sivasubramanian, M. Kaliappan, S. Vimal, S. Annamalai, "Cervical Cancer Identification with Synthetic Minority Oversampling Technique and PCA Analysis using Random Forest Classifier," J Med Syst, vol. 43, July. 2019.

I. Zain, K. Fithiasari, E. O. Permatasari, T. A. Nastiti, N. N. S. Mardyono, R. Pujihasvuty, and S. L. Nasution, "Imbalanced data analysis of adolescent risk behavior of drug abuse using random forest, "in AECon 2020: Proceedings of The 6th Asia-Pacific Education And Science Conference, AECon 2020, 19-20 December 2020, Purwokerto, Indonesia, p. 136. European Alliance for Innovation, 2021.

I. Yulianti, A. Rahmawati and T. Mardiana," The Effectiveness Analysis of Random Forest Algorithms with SMOTE Technique in Predicting Lung Cancer Risk," Jurnal Riset Informatika, vol. 4, pp. 207-213, March. 2022.

V. M. Putri, M. Masjkur and C. Suhaeni, "Performance of SMOTE in a random forest and Naïve bayes classifier for imbalanced Hepatitis-B vaccination status," J. Phys.: Conf. Ser. 1863 012073, 2021.

A.A. Rosita, A. Kurnia, and A. Djuraidah, "Evaluation of ensemble method for multiclass classification on unbalanced data," in AIP conf. Proc, vol. 2662, December. 2022.

Bapepam-LK. Decision of The Chairman of Badan Pengawas Pasar Modal dan Lembaga Keuangan Number: KEP-346/BL/2011 about Submission of Financial Reports by an Issuer or Public Company. 2011. Jakarta.

E. Christy and K. Suryowati, “Analisis Klasifikasi Status Bekerja Penduduk Daerah Istimewa Yogyakarta Menggunakan Metode Random Forest,” Jurnal Statistika Industri dan Komputasi, vol. 6, pp. 69-76, January. 2021.

E. C. P. Witjaksana, R. R. Saedudin, and V. P. Widartha, “Perbandingan Akurasi Algoritma Random Forest dan Algoritma Artificial Neural Network untuk Klasifikasi Penyakit Diabetes,” e-Proceeding of Engineering, vol. 8, pp. 9773-9781, October. 2021.

M. S. Maulana, R. Sabarudin and W. Nugraha,” Prediksi Ketepatan Waktu Mahasiswa Diploma dengan Komparasi Algoritma Klasifikasi,” Jurnal Sistem dan Teknologi Informasi, vol.7, pp.202-206, July. 2019.

M. Waris and B. H. Din, "Impact of corporate governance and ownership concentrations on timelines of financial reporting in Pakistan," Cogent Business & Management, vol. 10, January. 2023.

T. Herninta, “Faktor-Faktor yang Mempengaruhi Ketepatan Waktu Penyampaian Laporan Auditan Kepada Stakeholder,” ESENSI: Jurnal Manajemen Bisnis, vol. 23, pp. 333–348, September – December. 2020.

D. Wicaksono, “Pengaruh Profitabilitas, Kepemilikan Institusional dan Ukuran Perusahaan terhadap Ketepatan Waktu Penyampaian Laporan Keuangan (Studi Empiris pada perusahaan Sektor Industri Barang Konsumsi yang Terdaftar di Bursa Efek Indonesia Periode 2014-2018),” KINERJA Jurnal Ekonomi dan Bisnis, vol. 3, pp. 183 – 197, June. 2021.

C. F. Wibowo and M. H. Saleh, “Pengaruh Profitabilitas, Leverage, dan Ukuran Perusahaan terhadap Ketepatan Waktu Pelaporan Keuangan dengan Kualitas Auditor sebagai Variabel Moderating (Studi Empiris pada perusahaan Sub Sektor Makanan dan Minuman yang terdaftar di Bursa Efek Indonesia Tahun 2017-2019),” Sekolah Tinggi Ilmu Ekonomi Indonesia, 2020.

S. Ginting and S. E. Natasha, “Pengaruh Ukuran Perusahaan, Profitabilitas, dan Solvabilitas, Terhadap Ketepatan Waktu Pelaporan Keuangan pada Perusahaan Keuangan yang Terdaftar di Bursa Efek Indonesia Periode 2015-2017, “ Jurnal Wira Ekonomi Mikroskil, vol. 11, pp. 1-12, April. 2021.

S.Y.U.P. Putri and I. Wahyudi, “Pengaruh Umur Perusahaan, Ukuran Perusahaan, Likuiditas dan Profitabilitas terhadap Ketepatan Waktu Penyampaian Laporan Keuangan Perusahaan pada Masa Covid-19 (Studi pada Perusahaan Properti yang Terdaftar di BEI Tahun 2019-2020),” AKSELERASI: Jurnal Ilmiah Nasional, vol. 4, pp. 25 – 37, March. 2022.

J. Carolina, and V. C. L. Tobing, “Pengaruh Profitabilitas, Likuiditas, Solvabilitas dan Ukuran Perusahaan terhadap Ketepatan Waktu Penyampaian Laporan Keuangan pada perusahaan Manufaktur di BEI,” Jurnal Akuntansi Barelang, vol. 3, pp. 45-54, June. 2019.

Published
2024-07-18
How to Cite
Hayati, E., Nurjanah, F., & Kurnia Laili, F. (2024). Unbalanced Timeliness of Financial Reporting Data Classification Using Random Forest with SMOTE. Inform : Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 9(2), 132-136. https://doi.org/10.25139/inform.v9i2.8327
Section
Articles