Vehicle Licence Number Plate Recognition Using Convolution Neural Network for Traffic Violators in Indonesia

  • Firnanda Al-Islama Achyunda Putra Information System, Universitas Merdeka Malang
  • Andriyan Rizki Jatmiko Information System, Universitas Merdeka Malang
  • Devita Maulina Putri Information System, Universitas Merdeka Malang
  • Ardhillah Habibi Al-Fath Information System, Universitas Merdeka Malang
Abstract views: 183 , PDF downloads: 107
Keywords: Licence Plate Recognition, Traffic Management, CNN, Traffic Violators, Image Processing

Abstract

In the context of rising traffic violations and the need for efficient traffic management, this study explores the application of CNN in the recognition of licence plates to identify traffic violators in Indonesia. Traditional traffic enforcement methods are labour-intensive and prone to human error, necessitating a more automated and reliable approach. This research aims to enhance the accuracy and efficiency of license plate recognition (LPR) systems. The proposed system involves capturing vehicle images from the Roboflow Universe collected in the Malang area for use. We also use a CNN model to recognize and extract the alphanumeric characters from the plates. The CNN architecture is designed and trained on a comprehensive dataset of Indonesian licence plates, taking into account the unique characteristics and variations in plate designs specific to the region. The research we are doing is detecting number plates to reduce traffic violations. The method used for detection is the CNN method. The datasets used are primary and secondary. The precision, recall, and F1 score metrics further validate the system's reliability and robustness in real-world traffic scenarios. The implementation of this CNN-based LPR system promises a substantial improvement in monitoring and penalizing traffic violators, contributing to better traffic law enforcement and road safety in Indonesia. The accuracy for CRR is 82, and the accuracy for LPR is 85,33. The accuracy for CCR is 76.55 for precisions, 78.51 for recall, and 81.72 for F1 score.  The accuracy for LPR is 81.20 for precision, 87.37 for recall, and 83.56 for F1 score.

References

J. Ilmiah et al., “Signifikansi Pengaruh Akses Teknologi Informasi terhadap Indeks Pembangunan Manusia di Indonesia,” Jitekh, vol. 11, no. 2, pp. 83–94, 2023.

M. Ulum, M. Zakariya, A. I. Fiqhi, T. Elektro, and S. artikel, “Mei 2021 Hal. 23-30 Jurnal Ilmiah Teknik Informatika,” Elektron. dan Kontrol (Scientific J. Informatics, Electron. Control Eng., vol. 1, no. 1, pp. 23–30, 2021,

M. S. H. Onim et al., “BLPnet: A new DNN model and Bengali OCR engine for Automatic Licence Plate Recognition,” Array, vol. 15, no. August, p. 100244, 2022, doi: 10.1016/j.array.2022.100244.

N. Sharma et al., “Deep Learning and SVM-Based Approach for Indian Licence Plate Character Recognition,” Comput. Mater. Contin., vol. 74, no. 1, pp. 881–895, 2023, doi: 10.32604/cmc.2023.027899.

M. S. Al-Shemarry and Y. Li, “Developing learning-based pre-processing methods for detecting complicated vehicle licence plates,” IEEE Access, vol. 8, pp. 170951–170966, 2020, doi: 10.1109/ACCESS.2020.3024625.

J. Shashirangana, H. Padmasiri, D. Meedeniya, and C. Perera, “Automated licence plate recognition: A survey on methods and techniques,” IEEE Access, vol. 9, pp. 11203–11225, 2021, doi: 10.1109/ACCESS.2020.3047929.

N. L. Yaacob, A. A. Alkahtani, F. M. Noman, A. W. M. Zuhdi, and D. Habeeb, “Licence plate recognition for campus auto-gate system,” Indones. J. Electr. Eng. Comput. Sci., vol. 21, no. 1, pp. 128–136, 2021, doi: 10.11591/ijeecs.v21.i1.pp128-136.

M. Y. Arafat, A. S. M. Khairuddin, U. Khairuddin, and R. Paramesran, “Systematic review on vehicular licence plate recognition framework in intelligent transport systems,” IET Intell. Transp. Syst., vol. 13, no. 5, pp. 745–755, 2019, doi: 10.1049/iet-its.2018.5151.

Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv, “Automatically Designing CNN Architectures Using the Genetic Algorithm for Image Classification,” IEEE Trans. Cybern., vol. 50, no. 9, pp. 3840–3854, 2020, doi: 10.1109/TCYB.2020.2983860.

B. Benjdira, T. Khursheed, A. Koubaa, A. Ammar, and K. Ouni, “Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3Benjdira, B., Khursheed, T., Koubaa, A., Ammar, A., &Ouni, K. (2019). Car Detection using Unmanned Aerial Vehicles: Comparison between Faster R-CNN and YOLOv3. 2019 1s,” 2019 1st Int. Conf. Unmanned Veh. Syst. UVS 2019, pp. 1–6, 2019.

M. Kang, S. Shin, J. Jung, and Y. T. Kim, “Classification of Mental Stress Using CNN-LSTM Algorithms with Electrocardiogram Signals,” J. Healthc. Eng., vol. 2021, 2021, doi: 10.1155/2021/9951905.

M. A. Butt et al., “Convolutional Neural Network Based Vehicle Classification in Adverse Illuminous Conditions for Intelligent Transportation Systems,” complexity, vol. 2021, 2021, doi: 10.1155/2021/6644861.

Z. Ma et al., “Fine-Grained Vehicle Classification with Channel Max Pooling Modified CNNs,” IEEE Trans. Veh. Technol., vol. 68, no. 4, pp. 3224–3233, 2019, doi: 10.1109/TVT.2019.2899972.

H. Nguyen, “Improving Faster R-CNN Framework for Fast Vehicle Detection,” Math. Probl. Eng., vol. 2019, 2019, doi: 10.1155/2019/3808064.

F. A. I. Achyunda Putra, M. Andarwati, G. Swalaganata, and A. Risfandini, “Comparison SIFT and HOG Algorithm for Vehicle Classification in Malang Probolinggo,” Int. Conf. Software, Knowl. Information, Ind. Manag. Appl. Ski., pp. 57–62, 2023, doi: 10.1109/SKIMA59232.2023.10387366.

F. A. I. Achyunda Putra, F. Utaminingrum, and W. F. Mahmudy, “HOG Feature Extraction and KNN Classification for Detecting Vehicle in The Highway,” IJCCS (Indonesian J. Comput. Cybern. Syst., vol. 14, no. 3, p. 231, 2020, doi: 10.22146/ijccs.54050.

F. A.-I. A. Putra, A. G. Sulaksono, L. T. Utomo, and A. R. Khamdani, “Klasifikasi Buah dan Sayur Menggunakan Fitur Ekstraksi HOG dan Metode KNN,” J. Inform. Polinema, vol. 10, no. 1, pp. 45–52, 2023, doi: 10.33795/jip.v10i1.1433.

G. Yang, J. Wang, Z. Nie, H. Yang, and S. Yu, “A Lightweight YOLOv8 Tomato Detection Algorithm Combining Feature Enhancement and Attention,” Agronomy, vol. 13, no. 7, 2023, doi: 10.3390/agronomy13071824.

F. M. Talaat and H. ZainEldin, “An improved fire detection approach based on YOLO-v8 for smart cities,” Neural Comput. Appl., vol. 35, no. 28, pp. 20939–20954, 2023, doi: 10.1007/s00521-023-08809-1.

Y. Wang, K. Zhang, L. Wang, and L. Wu, “An Improved YOLOv8 Algorithm for Rail Surface Defect Detection,” IEEE Access, vol. 12, no. March, pp. 44984–44997, 2024, doi: 10.1109/ACCESS.2024.3380009.

M. Safaldin, N. Zaghden, and M. Mejdoub, “An Improved YOLOv8 to Detect Moving Objects,” IEEE Access, vol. 12, no. May, pp. 59782–59806, 2024, doi: 10.1109/ACCESS.2024.3393835.

H. Lou et al., “DC-YOLOv8: Small-Size Object Detection Algorithm Based on Camera Sensor,” Electron., vol. 12, no. 10, pp. 1–14, 2023, doi: 10.3390/electronics12102323.

Published
2024-08-05
How to Cite
Putra, F. A.-I. A., Jatmiko, A. R., Putri, D. M., & Al-Fath, A. H. (2024). Vehicle Licence Number Plate Recognition Using Convolution Neural Network for Traffic Violators in Indonesia. Inform : Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 9(2), 181-186. https://doi.org/10.25139/inform.v9i2.8449
Section
Articles