Prospective New College Student Dashboard: Insights from K-Means Clustering with Principal Component Analysis


Abstract
Higher education institutions currently compete to attract prospective students, necessitating the implementation of effective and efficient promotion strategies. Universities can create effective promotion strategies by considering the characteristics of prospective students. The clustering method is An approach to understanding prospective students' characteristics. However, clustering analysis with numerous attributes faces the issue of the curse of dimensionality. This research aims to overcome the curse of dimensionality in clustering by applying the K-means clustering method, which is enhanced through dimensionality reduction using Principal Component Analysis (PCA). The enhanced K-means method was applied to clustering data on prospective students at Telkom University Surabaya. The data used in this research pertains to prospective students interested in Telkom University Surabaya (TUS). Attributes include school origin, school province, domicile district/city, type of registration pathway, school type, and choice of study program. This research indicates that utilizing K-means clustering with PCA yielded superior cluster outcomes when evaluated against the Davies-Bouldin Index and Calinski-Harabasz Index, surpassing the performance of ordinary K-means clustering. The cluster analysis also shows that the ideal number of clusters is 3, using three principal components (PCs). The outcomes of the K-means clustering with PCA are incorporated into a dashboard that visually displays comprehensive information about the clusters. This dashboard simplifies examining how potential new students are geographically spread out, alongside how clusters are distributed across various study programs, school types, registration routes, and locations in districts/cities. The analytical data exploration on the dashboard can be utilized to address Business Questions Formulation related to the characteristics of prospective new students based on clustering results at Telkom University Surabaya.
References
Kemendikbudristek, Statistik Pendidikan Tinggi 2022. Jakarta, 2022.
S. Hidayati, A. T. Darmaliana, and R. Riski, "Comparison of K-Means, Fuzzy C-Means, Fuzzy Gustafson Kessel, and DBSCAN for Village Grouping in Surabaya Based on Poverty Indicators," J. Pendidik. Mat., vol. 5, no. 2, p. 185, 2022.
S. Sartikha, M. Maria, F. W. Sari, and N. Jannah, “Analisis Profil Mahasiswa Politeknik Negeri Batam dengan Teknik Data Mining Asosiasi dan Clustering,” J. Integr., vol. 8, no. 1, pp. 16–21, 2016.
A. Tahta, S. Budi, and B. A. Ridho, “Analisa Perbandingan Metode Hierarchical Clustering, K-Means dan Gabungan Keduanya dalam Cluster Data,” Stud. kasus Probl. Kerja Prakt. Jur. Tek. Ind. ITS)". Inst. Teknol. Surabaya, 2012.
D. Hediyati and I. M. Suartana, “Penerapan Principal Component Analysis (PCA) Untuk Reduksi Dimensi Pada Proses Clustering Data Produksi Pertanian Di Kabupaten Bojonegoro,” JIEET (Journal Inf. Eng. Educ. Technol., vol. 5, no. 2, pp. 49–54, 2021.
E. J. Nam, Y. Han, K. Mueller, A. Zelenyuk, and D. Imre, "Clustersculptor: A visual analytics tool for high-dimensional data," in 2007 IEEE Symposium on Visual Analytics Science and Technology, 2007, pp. 75–82.
S. Mulyaningsih and J. Heikal, "K-Means Clustering Using Principal Component Analysis (PCA) Indonesia Multi-Finance Industry Performance Before and During Covid-19," APMBA (Asia Pacific Manag. Bus. Appl., vol. 11, no. 2, pp. 131–142, 2022.
W. A. Prastyabudi, A. N. Alifah, and A. Nurdin, "Segmenting the Higher Education Market: An Analysis of Admissions Data Using K-Means Clustering," Procedia Comput. Sci., vol. 234, pp. 96–105, 2024.
N. A. Rahmalinda and A. Jananto, “Penerapan Metode K-Means Clustering Dalam Menentukan Strategi Promosi Berdasarkan Data Penerimaan Mahasiswa Baru,” J. Tekno Kompak, vol. 16, no. 2, pp. 163–175, 2022.
M. Farozi, “Metode K-Means Clustering Dalam Merancang Strategi Promosi Penerimaan Mahasiswa Baru Pada STIE Serelo Lahat,” J. Ilm. Inform. Glob., vol. 12, no. 2, 2021.
B. Harahap and A. Rambe, “Implementasi K-Means Clustering Terhadap Mahasiswa yang Menerima Beasiswa Yayasan Pendidikan Battuta di Universitas Battuta Tahun 2020/2021 Studi Kasus Prodi Informatika,” Informatika, vol. 9, no. 3, pp. 90–97, 2021.
R. Budiman, “Penerapan Data Mining Untuk Menentukan Lokasi Promosi Penerimaan Mahasiswa Baru Pada Universitas Banten Jaya (Metode K-Means Clustering),” ProTekInfo (Pengembangan Ris. dan Obs. Tek. Inform., vol. 6, pp. 6–14, 2019.
M. R. Alhapizi, M. Nasir, and I. Effendy, “Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Promosi Mahasiswa Baru Universitas Bina Darma Palembang,” J. Softw. Eng. Ampera, vol. 1, no. 1, pp. 1–14, 2020.
D. Susilowati, H. Hairani, I. P. Lestari, K. Marzuki, and L. Z. A. Mardedi, “Segmentasi Lokasi Promosi Penerimaan Mahasiswa Baru Menggunakan Metode RFM dan K-Means Clustering,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 21, no. 2, pp. 275–282, 2022.
D. Y. Liliana, I. Ermis, A. R. Zain, and N. A. Azza, “K-Means Clustering untuk Visualisasi Informasi Pemanfaatan Aplikasi Deteksi Dini Depresi,” in Seminar Nasional Inovasi Vokasi, 2022, vol. 1, pp. 116–123.
C. Ware, Information visualization: perception for design. Morgan Kaufmann, 2019.
B. M. S. Hasan and A. M. Abdulazeez, "A review of principal component analysis algorithm for dimensionality reduction," J. Soft Comput. Data Min., vol. 2, no. 1, pp. 20–30, 2021.
C. Ding and X. He, "K-means clustering via principal component analysis," in Proceedings of the twenty-first international conference on Machine learning, 2004, p. 29.
K. P. Sinaga and M.-S. Yang, "Unsupervised K-means clustering algorithm," IEEE access, vol. 8, pp. 80716–80727, 2020.
S. Dewi and M. A. I. Pakereng, “Implementasi Principal Component Analysis pada K-Means untuk Klasterisasi Tingkat Pendidikan Penduduk Kabupaten Semarang,” JIPI (Jurnal Ilm. Penelit. dan Pembelajaran Inform., vol. 8, no. 4, pp. 1186–1195, 2023.
M. A. Syakur, B. K. Khotimah, E. M. S. Rochman, and B. D. Satoto, "Integration k-means clustering method and elbow method for identification of the best customer profile cluster," in IOP conference series: materials science and engineering, 2018, vol. 336, p. 12017.
S. P. Lima and M. D. Cruz, "A genetic algorithm using Calinski-Harabasz index for automatic clustering problem," Rev. Bras. Comput. Apl., vol. 12, no. 3, pp. 97–106, 2020.
Y. A. Wijaya, D. A. Kurniady, E. Setyanto, W. S. Tarihoran, D. Rusmana, and R. Rahim, "Davies bouldin index algorithm for optimizing clustering case studies mapping school facilities," TEM J, vol. 10, no. 3, pp. 1099–1103, 2021.
X. Wang and Y. Xu, "An improved index for clustering validation based on Silhouette index and Calinski-Harabasz index," in IOP Conference Series: Materials Science and Engineering, 2019, vol. 569, no. 5, p. 52024.
S. Batt, T. Grealis, O. Harmon, and P. Tomolonis, "Learning Tableau: A data visualization tool," J. Econ. Educ., vol. 51, no. 3–4, pp. 317–328, 2020.
R. Akbar and M. Octaviany, “Perancangan visualisasi dashboard dan clustering dengan menerapkan business intelligence pada dinas DPMPTSP kabupaten Dharmasraya,” JEPIN (Jurnal Edukasi dan Penelit. Inform., vol. 7, no. 3, pp. 340–350, 2021.
A. Karna and K. Gibert, "Automatic identification of the number of clusters in hierarchical clustering," Neural Comput. Appl., vol. 34, no. 1, pp. 119–134, 2022.
N. L. R. A. Nur Laita Rizki Amalia, A. A. S. Ahmad Afif Supianto, N. Y. S. Nanang Yudi Setiawan, V. Z. Vicky Zilvan, A. R. Y. Asri Rizki Yuliani, and A. R. Ade Ramdan, “Student Academic Mark Clustering Analysis and Usability Scoring on Dashboard Development Using K-Means Algorithm and System Usability Scale,” J. Ilmu Komput. Dan Inf., vol. 14, no. 2, pp. 137–143, 2021.
Copyright (c) 2024 Dyah Putri Rahmawati, Sri Hidayati, Paramaditya Arismawati, Ahmad Wali Satria Bahari Johan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.