New Approach to The Perceptron Algorithm with Quantum Computing for Prediction Analysis of Rice Imports in Indonesia

  • Solikhun Solikhun Informatics Engineering Department, STIKOM Tunas Bangsa
  • Jeni Sugiandi Informatics Engineering Department, STIKOM Tunas Bangsa
  • Lise Pujiastuti Information System Department, STMIK Antar Bangsa
Abstract views: 95 , PDF downloads: 68
Keywords: Rice Import Prediction, Quantum Computing, Quantum Perceptron Algorithm

Abstract

Rice imports are crucial to ensure a country's food availability, especially when domestic production is insufficient. Because rice is the staple food of Indonesians, a spike in rice prices could cause social unrest. Rice imports have a strategic role in maintaining food stability and reducing the risk of price instability. This research aims to utilize the Quantum Perceptron algorithm to predict rice imports more effectively. Quantum Perceptron is a new approach that combines the principles of quantum mechanics with artificial intelligence to improve prediction performance. Researchers used data on the number of rice imports from the leading countries of origin obtained from the Central Statistics Agency using 7 variables x1 to x7. The research results show that the quantum perceptron algorithm can make predictions very well, proven by a perfect accuracy of 100% with a total of 20 epochs. This result is still better than the classical perceptron, which has 100% accuracy but with a larger number of epochs, namely 50. Quantum perceptron has better performance and shorter time, which can be seen from the smaller number of epochs compared to the classical perceptron.

References

M. Syukron and H. H. Adinugraha, “Strategi Peningkatan Hasil Pertanian Perspektif Ekonomi Syariah (Studi Kasus Pertanian Padi Di Desa Ngalian) Muhammad,” Studia Economica : Jurnal Ekonomi Islam, vol. 10, no. 1, pp. 1–13, 2024.

M. Z. Gapari, “Pengaruh Kenaikan Harga Beras Terhadap Kesejahteraan Petani Di Desa Sukaraja,” PENSA : Jurnal Pendidikan dan Ilmu Sosial, vol. 3, no. 1, pp. 14–26, 2021.

A. Erawati, M. Surif, and S. F. Dalimunthe, “Analisis Wacana Kritis Nourman Fairclough terhadap Jokowi yang Menyentil Menterinya Mengenai Kenaikan Harga Minyak Goreng,” Jurnal Pendidikan Tambusai, vol. 6, no. 2, pp. 10653–10662, 2022.

A. Michael and M. Garonga, "Prediksi Kunjungan Wisatawan Toraja Utara Menggunakan Jaringan Saraf Tiruan Backpropagation," Journal Dynamic Saint, vol. 5, no. 1, pp. 890–895, 2020, doi: 10.47178/dynamicsaint.v5i1.1237.

R. M. Ibrahim, “Optimasi Algoritma Pengenalan Tulisan Tangan Untuk Aplikasi Ocr ( Optical Character Recognition ),” Tugas Mahasiswa Program Studi Informatika, vol. 1, no. 2, pp. 1–15, 2024.

R. Adawiyah and Munifah, “Eksplorasi Kapasitas Pengkodean Amplitudo Untuk Model Quantum Machine Learning,” Informatika: Jurnal Teknik Informatika dan Multimedia, vol. 3, no. 1, pp. 38–58, 2023, doi: 10.51903/informatika.v3i1.232.

P. Priyadi, E. Sediyono, and S. Y. J. Prasetyo, “Penataan Ruang Kawasan Agropolitan di Kabupaten Semarang dengan Metode Artificial Neural Network,” Jurnal Transformatika, vol. 17, no. 2, pp. 134–148, 2020, doi: 10.26623/transformatika.v17i2.1615.

A. Efendi, I. Iskandar, R. Kurniawan, and M. Affandes, “Klasifikasi Kebakaran Hutan Riau Menggunakan Random Forest dan Visualisasi Citra Sentinel-2,” KLIK:Kajian Ilmiah Informatika dan Komputer, vol. 4, no. 3, pp. 1602–1612, 2023, doi: 10.30865/klik.v4i3.1521.

S. Y. Silitonga, “Implementasi Metode Multilayer Perceptron Untuk Mengetahui Produktivitas Buruh Pabrik (Studi Kasus: PT. Sinar Mas Agro Resources And Technology Tbk),” Pelita Informatika: Informasi dan Informatika, vol. 8, no. 4, pp. 423–429, 2020.

N. Putri, E. Santoso, and S. Adinugroho, “Prediksi Volume Impor Beras Nasional dengan Metode Multi-Factors High-Order Fuzzy Time Series,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 1, no. 12, pp. 1771–1778, 2017.

S. Solikhun and V. Yasin, "Analisis Quantum Perceptron Untuk Memprediksi Jumlah Pengunjung Ucok Kopi Pematangsiantar Pada Masa Pandemi Covid-19," Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 8, no. 1, pp. 162–167, 2022, doi: 10.26418/jp.v8i1.52191.

P. R. Iswardani, M. Sudarma, and L. Jasa, "Peramalan Nilai Tukar Rupiah Terhadap Mata Uang Negara Asia Menggunakan Metode Quantum Neural Network," Majalah Ilmiah Teknologi Elektro, vol. 20, no. 1, pp. 153–160, 2021, doi: 10.24843/mite.2021.v20i01.p18.

R. Dewi and M. R. Lubis, “Analisis Metode Quantum untuk Optimalisasi Algoritma Best First Search,” Jurnal Edukasi dan Penelitian Informatika (JEPIN), vol. 7, no. 2, pp. 300–304, 2021, doi: 10.26418/jp.v7i2.48557.

D. Fitriani, “Era Quantum Computing: Menuju Perhitungan Yang Lebih Cepat Dan Efisien,” Jurnal Teknologipintar, vol. 4, no. 2, 2024.

F. Hutomo, R. W. Wardhani, and D. Ogi, “Implementasi Algoritme Shor pada Sirkuit Kuantum untuk Cracking Algoritme RSA,” Jurnal Info Kripto, vol. 16, no. 3, pp. 111–118, 2022, doi: 10.56706/ik.v16i3.62.

I. G. W. Putra, I. G. D. Arjana, and W. Setiawan, “Perancangan Penempatan Recloser Yang Optimum Menggunakan Metode Quantum Genetic Algorithm Di Penyulang Palapa,” Jurnal SPEKTRUM, vol. 7, no. 4, pp. 90–99, 2020, doi: 10.24843/spektrum.2020.v07.i04.p12.

F. W. Dewi, L. Magdalena, and R. Ilyasa, “Jaringan Syaraf Tiruan Algoritma Backpropagation Untuk Prediksi Pemenang Mojang Jajaka Jawa Barat,” Jurnal Ilmu-ilmu Informatika dan Manajemen STMIK, vol. 16, no. 1, pp. 49–60, 2022.

H. U. Sari, A. P. Windarto, and I. S. Damanik, “Analisis Jaringan Saraf Tiruan dengan Backpropagation pada korelasi Matakuliah Pratikum Terhadap Tugas Akhir,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 1, pp. 115–121, 2022, doi: 10.30865/jurikom.v9i1.3835.

A. J. E. Oktavianus, L. Naibaho, and D. A. Rantung, “Pemanfaatan Artificial Intelligence pada Pembelajaran dan Asesmen di Era Digitalisasi,” Jurnal Kridatama Sains Dan Teknologi, vol. 5, no. 2, pp. 473–486, Dec. 2023, doi: 10.53863/kst.v5i02.975.

M. Kurniawan, M. Hakimah, and S. Agustini, “Perbandingan SVM dan Perceptron dengan Optimasi Heuristik,” Jurnal Telematika, vol. 15, no. 2, pp. 85–92, 2020.

I. N. Purnama, "Perbandingan Klasifikasi Website Secara Otomatis Menggunakan Metode Multilayer Perceptron dan Naive Bayes," Jurnal Sistem Komputer dan Informatika (JSON), vol. 2, no. 2, pp. 155–161, 2021, doi: 10.30865/json.v2i2.2703.

M. H. Yuhandri and L. Mayola, “Identifikasi Pola Seleksi Penentuan Calon Wali Nagari dengan Menggunakan Artificial Neural Network Algoritma Perceptron,” Jurnal KomtekInfo, vol. 10, no. 4, pp. 158–165, 2023, doi: 10.35134/komtekinfo.v10i4.485.

W. Saputra and Y. D. Prabowo, “Pengembangan Aplikasi Klasifikasi Gambar Menggunakan Library Tensorflow yang Menerapkan Algoritma Convolutional Neural Network Studi Kasus: Galeri Foto Kegiatan Ibadah Gereja Shoot Fellowship,” KALBISIANA : Jurnal Mahasiswa Institut Teknologi dan Bisnis Kalbis, vol. 8, no. 3, pp. 2892–2901, 2022.

T. Baidawi and Solikhun, "A Comparison of Madaline and Perceptron Algorithms on Classification with Quantum Computing Approach," Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 8, no. 2, pp. 280–287, 2024, doi: 10.29207/resti.v8i2.5502.

A. Yuan, C. M. G. Leditto, and R. T. R. Hutangalung, “Keterbelitan Kuantum (Quantum Entanglement),” Jurnal Sains Dan Komputer, vol. 6, no. 1, pp. 49–60, 2021.

N. A. Zen and R. Nuraini, “Tingkat Energi Pada Osilator Anharmonik 1 Dimensi Menggunakan Metode Perturbasi Orde 2,” Jurnal Ilmu Fisika (JIF), vol. 12, no. 2, pp. 70–78, 2020, doi: 10.25077/jif.12.2.70-78.2020.

Published
2025-01-30
How to Cite
Solikhun, S., Sugiandi, J., & Pujiastuti, L. (2025). New Approach to The Perceptron Algorithm with Quantum Computing for Prediction Analysis of Rice Imports in Indonesia. Inform : Jurnal Ilmiah Bidang Teknologi Informasi Dan Komunikasi, 10(1), 61-65. https://doi.org/10.25139/inform.v10i1.9193
Section
Articles