Main Article Content

Abstract

Xanthosoma sagittifolium or tannia cocoyam (TC) is a root vegetable that grows in Java. Its corm can be used as flour to increase the use of TC. However, one major issue is that TC corm flour is less elastic than wheat flour. Nonetheless, modifications such as gaplek fermentation may be implemented to enhance the characteristics of TC flour. However, the microorganisms that contribute to the processing of gaplek through natural fermentation have never been characterized. This study focuses on the isolation and identification of microorganisms that play a role in the gaplek fermentation of TC. The methods used to determine these microorganisms included counting the total bacteria using Total Plate Count, identifying lactic acid bacteria using selective media De Man, Rogosa, and Sharpe Agar, as well as fungi and yeast using selective media Potato Dextrose Agar. Other tests that were conducted were motility test, catalase test, and carbohydrate fermentation test using seven different sugars, i.e., arabinose, dextrose, lactose, maltose, mannose, rhamnose, and sucrose. Sampling was conducted on dried TC chips and soaked TC chips at 0 hours and 48 hours. The results revealed the thriving of lactic acid bacteria after 48 hours of wet fermentation, which were suggested as Lactococcus and Leuconostoc. In addition to lactic acid bacteria, other microbes such as yeast and non-pathogenic Staphylococcus were also identified.

Article Details

Author Biographies

Angie Felita Purwanto, Universitas Ciputra Surabaya

Food Technology Program

Leonardus Patrick Harsono, Universitas Ciputra Surabaya

Food Technology Program

Grace Honey Budihardja, Universitas Ciputra Surabaya

Food Technology Program

How to Cite
Krisbianto, O., Purwanto, A. F., Harsono, L. P., & Budihardja, G. H. (2024). Isolation and Identification of Microorganisms in the Making of Gaplek Tannia Cocoyam (Xanthosoma sagittifolium). Food Science and Technology Journal (Foodscitech), 69-83. https://doi.org/10.25139/fst.vi.5250

References

  1. Alan, Y., Savcı, A., Koçpınar, E. F., & Ertaş, M. (2022). Postbiotic metabolites, antioxidant and anticancer activities of probiotic Leuconostoc pseudomesenteroides strains in natural pickles. Archives of Microbiology, 204(9), 571. Retrieved from https://doi.org/10.1007/s00203-022-03180-6
  2. Angraeni, P. D., Marhamah, & Djayasinga, R. (2021). Pengaruh pemanasan berulang terhadap kualitas media Plate Count Agar (PCA) di laboratorium bakteriologi jurusan analisis kesehatan. Jurnal Medika Malahayati, 6(4), 220–226.
  3. Asliha, I. N., & Alami, N. H. (2014). Karakterisasi Khamir dari Pulau Poteran Madura. Jurnal Sains Dan Seni Pomits, 3(2), E49–E52.
  4. Astuti, S. D., Andrawulan, N., Fardiaz, D., & Purnomo, E. H. (2017). Karakteristik tepung talas varietas bentul dan satoimo hasil fermentasi terkendali dengan inokulum komersial. Jurnal Teknologi Dan Industri Pangan, 28(2), 180–193.
  5. Badan Standardisasi Nasional. Metode pengujian cemaran mikroba dalam daging, telur dan susu, serta hasil olahannya (2008). Jakarta: Badan Standardisasi Nasional.
  6. Badan Standardisasi Nasional. Cara uji mikrobiologi-Bagian 9: Penentuan Staphylococcus aureus pada produk perikanan (2011). Jakarta: Badan Standardisasi Nasional.
  7. Badan Standardisasi Nasional. Cara uji mikrobiologi-Bagian 7:perhitungan kapang dan khamir pada produk perikanan (2015). Jakarta: Badan Standardisasi Nasional.
  8. Ballah, F. M., Islam, Md. S., Rana, Md. L., Khatun, Mst. M., Rahman, M., Hassan, J., & Rahman, Md. T. (2023). Draft genome sequence of Staphylococcus gallinarum BAU_KME002 strain isolated from egg surface in Bangladesh. Microbiology Resource Announcements, 12(10). Retrieved from https://doi.org/10.1128/MRA.00555-23
  9. Bamforth, C. W., & Cook, D. J. (2019). Food, Fermentation, and Micro-organisms (2nd ed.). John Wiley & Sons.
  10. Björkroth, J., & Holzapfel, W. (2006). Genera Leuconostoc, Oenococcus and Weissella. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, & E. Stackebrandt (Eds.), The Prokaryotes (Vol. 4, pp. 267–319). New York: Springer . Retrieved from https://doi.org/10.1007/0-387-30744-3_9
  11. Boulay, M., Al Haddad, M., & Rul, F. (2020). Streptococcus thermophilus growth in soya milk: Sucrose consumption, nitrogen metabolism, soya protein hydrolysis and role of the cell-wall protease PrtS. International Journal of Food Microbiology, 335, 108903. Retrieved from https://doi.org/10.1016/j.ijfoodmicro.2020.108903
  12. Bustamante, D., Tortajada, M., Ramón, D., & Rojas, A. (2019). Production of D-Lactic Acid by the Fermentation of Orange Peel Waste Hydrolysate by Lactic Acid Bacteria. Fermentation, 6(1), 1. Retrieved from https://doi.org/10.3390/fermentation6010001
  13. Capozzi, V., Fragasso, M., & Russo, P. (2020). Microbiological Safety and the Management of Microbial Resources in Artisanal Foods and Beverages: The Need for a Transdisciplinary Assessment to Conciliate Actual Trends and Risks Avoidance. Microorganisms, 8(2), 306. Retrieved from https://doi.org/10.3390/microorganisms8020306
  14. Chen, J., Shen, J., Hellgren, L. I., Jensen, P. R., & Solem, C. (2015). Adaptation of Lactococcus lactis to high growth temperature leads to a dramatic increase in acidification rate. Scientific Reports, 5(1), 14199. Retrieved from https://doi.org/10.1038/srep14199
  15. Couvert, O., Divanac’h, M.-L., Lochardet, A., Thuault, D., & Huchet, V. (2019). Modelling the effect of oxygen concentration on bacterial growth rates. Food Microbiology, 77, 21–25. Retrieved from https://doi.org/10.1016/j.fm.2018.08.005
  16. Cox, N. A., Richardson, L. J., Cosby, D. E., Berrang, M. E., Wilson, J. L., & Harrison, M. A. (2017). A four‐quadrant sequential streak technique to evaluate Campylobacter selective broths for suppressing background flora in broiler carcass rinses. Journal of Food Safety, 37(2), 1–3. Retrieved from https://doi.org/10.1111/jfs.12311
  17. Dass, C. R. (1999). Starter Cultures | Importance of Selected Genera . In R. K. Robinson (Ed.), Encyclopedia of Food Microbiology (pp. 2095–2100). Elsevier. Retrieved from https://doi.org/10.1006/rwfm.1999.1515
  18. Fauziyah, Z., Nia, L., Julia Nandi, F., Lingga, R., & Helmi, H. (2023). Identifikasi dan Potensi Probiotik Bakteri Asam Laktat pada Pangan Fermentasi Lokal. Jurnal Bios Logos, 13(2), 54–64. Retrieved from https://doi.org/10.35799/jbl.v13i2.47900
  19. Fusco, V., Quero, G. M., Cho, G.-S., Kabisch, J., Meske, D., Neve, H., … Franz, C. M. A. P. (2015). The genus Weissella: taxonomy, ecology and biotechnological potential. Frontiers in Microbiology, 6, 155. Retrieved from https://doi.org/10.3389/fmicb.2015.00155
  20. Gänzle, M. G. (2015). Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science, 2, 106–117. Retrieved from https://doi.org/10.1016/j.cofs.2015.03.001
  21. Golomb, B. L., & Marco, M. L. (2015). Lactococcus lactis Metabolism and Gene Expression during Growth on Plant Tissues. Journal of Bacteriology, 197(2), 371–381. Retrieved from https://doi.org/10.1128/JB.02193-14
  22. Gustaw, K., Niedźwiedź, I., Rachwał, K., & Polak-Berecka, M. (2021). New Insight into Bacterial Interaction with the Matrix of Plant-Based Fermented Foods. Foods, 10(7), 1603. Retrieved from https://doi.org/10.3390/foods10071603
  23. Haghshenas, B., Nami, Y., Haghshenas, M., Abdullah, N., Rosli, R., Radiah, D., & Yari Khosroushahi, A. (2015). Bioactivity characterization of Lactobacillus strains isolated from dairy products. MicrobiologyOpen, 4(5), 803–813. Retrieved from https://doi.org/10.1002/mbo3.280
  24. Han, K., Park, S., Sathiyaseelan, A., & Wang, M.-H. (2023). Isolation and Characterization of Enterococcus faecium from Fermented Korean Soybean Paste with Antibacterial Effects. Fermentation, 9(8), 760. Retrieved from https://doi.org/10.3390/fermentation9080760
  25. Harper, A. R., Dobson, R. C. J., Morris, V. K., & Moggré, G. (2022). Fermentation of plant‐based dairy alternatives by lactic acid bacteria. Microbial Biotechnology, 15(5), 1404–1421. Retrieved from https://doi.org/10.1111/1751-7915.14008
  26. Heo, S., Park, J., Lee, E., Lee, J.-H., & Jeong, D.-W. (2022). Transcriptomic Analysis of Staphylococcus equorum KM1031, Isolated from the High-Salt Fermented Seafood Jeotgal, under Salt Stress. Fermentation, 8(8), 403. Retrieved from https://doi.org/10.3390/fermentation8080403
  27. Ilboudo, C. M., & Bratcher, D. F. (2023). Other Gram-Positive Bacilli. In S. S. Long (Ed.), Principles and Practice of Pediatric Infectious Diseases (pp. 802-806.e5). Elsevier. Retrieved from https://doi.org/10.1016/B978-0-323-75608-2.00133-6
  28. Irlinger, F., Loux, V., Bento, P., Gibrat, J.-F., Straub, C., Bonnarme, P., … Monnet, C. (2012). Genome sequence of Staphylococcus equorum subsp. equorum Mu2, isolated from a French smear-ripened cheese. Journal of Bacteriology, 194(18), 5141–5142. Retrieved from https://doi.org/10.1128/JB.01038-12
  29. Khaldi, T. E. M., Kebouchi, M., Soligot, C., Gomri, M. A., Kharroub, K., Le Roux, Y., & Roux, E. (2019). Streptococcus macedonicus strains isolated from traditional fermented milks: resistance to gastrointestinal environment and adhesion ability. Applied Microbiology and Biotechnology, 103(6), 2759–2771. Retrieved from https://doi.org/10.1007/s00253-019-09651-z
  30. Kherdekar, R. S., Dixit, A., Kothari, A., Pandey, K. P., Advani, H., Gaurav, A., & Omar, B. J. (2023). Unusually isolated Staphylococcus arlettae in intra-oral sutures - Case series. Access Microbiology, 5(8). Retrieved from https://doi.org/10.1099/acmi.0.000555.v4
  31. Kinteki, G. A., Rizqiati, H., & Hintono, A. (2019). Pengaruh Lama Fermentasi Kefir Susu Kambing Terhadap Mutu Hedonik, Total Bakteri Asam Laktat (BAL), Total Khamir dan pH. Jurnal Teknologi Pangan, 3(1), 42–50. Retrieved from https://doi.org/10.14710/jtp.2019.20685
  32. Krisbianto, O., & Minantyo, H. (2024). Physicochemical characteristics of tannia cocoyam (Xanthosoma sagittifolium) corm flour compared to flours and starches of other grains and tubers. Food Research, 8(3), 54–61. Retrieved from https://doi.org/10.26656/fr.2017.8(3).226
  33. Lehman, D. (2005). Triple Sugar Iron Agar Protocols. Retrieved from Washington, DC:
  34. Löfblom, J., Rosenstein, R., Nguyen, M.-T., Ståhl, S., & Götz, F. (2017). Staphylococcus carnosus: from starter culture to protein engineering platform. Applied Microbiology and Biotechnology, 101(23–24), 8293–8307. Retrieved from https://doi.org/10.1007/s00253-017-8528-6
  35. Maoloni, A., Ferrocino, I., Milanović, V., Cocolin, L., Corvaglia, M. R., Ottaviani, D., … Osimani, A. (2020). The Microbial Diversity of Non-Korean Kimchi as Revealed by Viable Counting and Metataxonomic Sequencing. Foods, 9(11), 1568. Retrieved from https://doi.org/10.3390/foods9111568
  36. Mefleh, M., Omri, G., Limongelli, R., Minervini, F., Santamaria, M., & Faccia, M. (2024). Enhancing nutritional and sensory properties of plant-based beverages: a study on chickpea and Kamut® flours fermentation using Lactococcus lactis. Frontiers in Nutrition, 11, 1269154. Retrieved from https://doi.org/10.3389/fnut.2024.1269154
  37. Meslier, V., Loux, V., & Renault, P. (2012). Genome Sequence of Lactococcus raffinolactis Strain 4877, Isolated from Natural Dairy Starter Culture. Journal of Bacteriology, 194(22), 6364–6364. Retrieved from https://doi.org/10.1128/JB.01697-12
  38. Mokoena, M. P. (2017). Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Molecules, 22(8), 1255. Retrieved from https://doi.org/10.3390/molecules22081255
  39. Montemurro, M., Pontonio, E., Coda, R., & Rizzello, C. G. (2021). Plant-Based Alternatives to Yogurt: State-of-the-Art and Perspectives of New Biotechnological Challenges. Foods, 10(2), 316. Retrieved from https://doi.org/10.3390/foods10020316
  40. Nguyen, D. V., Nguyen, T. Q., & Nguyen, T. H. K. (2016). Differentiation of Leuconostoc mesenteroides media modified with different sugars. Journal of Chemical and Pharmaceutical Research, 8(8), 502–506.
  41. Ojokoh, A. O., & Adeleke, B. S. (2019). Processing of Yam Paste (Amala): A Product of Fermented Yam (Dioscorea rotundata) Flour. International Annals of Science, 8(1), 87–95. Retrieved from https://doi.org/10.21467/ias.8.1.87-95
  42. Onyeaka, H. N., & Nwabor, O. F. (2022). Lactic acid bacteria and bacteriocins as biopreservatives. In Food Preservation and Safety of Natural Products (pp. 147–162). Elsevier. Retrieved from https://doi.org/10.1016/B978-0-323-85700-0.00012-5
  43. Pangestu, A. D., Kurniawan, K., & Supriyadi, S. (2021). Pengaruh Variasi Suhu dan Lama Penyimpanan terhadap Viabilitas Bakteri Asam Laktat (BAL) dan Nilai pH Yoghurt. Borneo Journal of Medical Laboratory Technology, 3(2), 231–236. Retrieved from https://doi.org/10.33084/bjmlt.v3i2.2169
  44. Pawar, R., Dhawal, P., Nabar, B., Barve, S., & Zambare, V. (2022). Mechanisms and applications of probiotics in healthcare industry. In D. Bahr (Ed.), Biotechnology in Healthcare (pp. 225–257). Elsevier. Retrieved from https://doi.org/10.1016/B978-0-323-90042-3.00002-5
  45. Pérez-Ramos, A., Madi-Moussa, D., Coucheney, F., & Drider, D. (2021). Current Knowledge of the Mode of Action and Immunity Mechanisms of LAB-Bacteriocins. Microorganisms, 9(10), 2107. Retrieved from https://doi.org/10.3390/microorganisms9102107
  46. Reiner, K. (2012). Carbohydrate Fermentation Protocol. Retrieved from Washington, DC:
  47. Saarinen, K., Laakso, J., Lindström, L., & Ketola, T. (2018). Adaptation to fluctuations in temperature by nine species of bacteria. Ecology and Evolution, 8(5), 2901–2910. Retrieved from https://doi.org/10.1002/ece3.3823
  48. Sameli, N., Sioziou, E., Bosnea, L., Kakouri, A., & Samelis, J. (2021). Assessment of the Spoilage Microbiota during Refrigerated (4 °C) Vacuum-Packed Storage of Fresh Greek Anthotyros Whey Cheese without or with a Crude Enterocin A-B-P-Containing Extract. Foods, 10(12), 2946. Retrieved from https://doi.org/10.3390/foods10122946
  49. Saraoui, T., Leroi, F., Björkroth, J., & Pilet, M. F. (2016). Lactococcus piscium : a psychrotrophic lactic acid bacterium with bioprotective or spoilage activity in food-a review. Journal of Applied Microbiology, 121(4), 907–918. Retrieved from https://doi.org/10.1111/jam.13179
  50. Sharma, R., Garg, P., Kumar, P., Bhatia, S. K., & Kulshrestha, S. (2020). Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation, 6(4), 106. Retrieved from https://doi.org/10.3390/fermentation6040106
  51. Sugiharto, Y., Yuwono, V. K., & Krisbianto, O. (2022). Profil Fisikokimia Tepung Mbote Termodifikasi secara Fermentasi dan Aplikasinya pada Mi Basah. Jurnal Teknologi Pangan Dan Gizi, 21(2), 156–167. Retrieved 13 April 2023 from https://doi.org/10.33508/jtpg.v21i2.4238
  52. Sumampouw, O. J. (2019). Mikrobiologi Kesehatan. Yogyakarta: Deepublish.
  53. Tomita, S., Watanabe, J., Nakamura, T., Endo, A., & Okada, S. (2020). Characterisation of the bacterial community structures of sunki, a traditional unsalted pickle of fermented turnip leaves. Journal of Bioscience and Bioengineering, 129(5), 541–551. Retrieved from https://doi.org/10.1016/j.jbiosc.2019.11.010
  54. Ubalua, A. O., Ewa, F., & Okeagu, O. D. (2016). Potentials and challenges of sustainable taro (Colocasia esculenta) production in Nigeria. Journal of Applied Biology & Biotechnology, 4(1), 53–59. Retrieved from https://doi.org/10.7324/JABB.2016.40110
  55. Vos, P., Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., … Whitman, W. B. (Eds.). (2009). Bergey’s Manual of Systematic Bacteriology: The Firmicutes (2nd ed., Vol. 3). New York: Springer. Retrieved from https://doi.org/10.1007/978-0-387-68489-5
  56. Wade, M. E., Strickland, M. T., Osborne, J. P., & Edwards, C. G. (2019). Role of Pediococcus in winemaking. Australian Journal of Grape and Wine Research, 25(1), 7–24. Retrieved from https://doi.org/10.1111/ajgw.12366
  57. Weiser, J. N., Ferreira, D. M., & Paton, J. C. (2018). Streptococcus pneumoniae: transmission, colonization and invasion. Nature Reviews Microbiology, 16(6), 355–367. Retrieved from https://doi.org/10.1038/s41579-018-0001-8

DB Error: Unknown column 'Array' in 'where clause'