Main Article Content
Abstract
The golden snail (Pomacea canaliculata) is an animal that lives in rice fields and is one of the agricultural pests that often suffers and can interfere with the growth of rice plants because of its very fast development. unused and become waste for the environment. The golden snail shell contains a chitin polysaccharide which can be reduced to chitosan (β1-4 N-acetyl D-glucosamine) through the deacetylation stage, namely the process of taking the acetamide group in chitin (CH3CONH) so that it becomes an amine group (NH2) in chitosan. The manufacture of chitosan is carried out through 3 stages, namely the process of deproteination, demineralization, and deacetylation. The purpose of this study was to determine the characteristics and quality of chitosan produced from golden snail shells. Based on the analysis conducted, chitosan has a yield of 53.91%; water content 1.68%; ash content 12.31%; molecular weight 640.83 kDa; solubility 95.53; and deacetylation degree 82.33%.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Agustina. (2015). Isolasi Kitin, Karakterisasi, dan Sintesis Kitosan dari Kulit Udang. Jurnal Kimia 9(2): 271–278.
- Atika. (2013). Potensi Zat Kitin Pada Hama Keong Mas (Pomacea canaliculata) Sebagai Pengawet Organik Buah Klimaterik Lokal Kalimantan Barat Dalam Upaya Mewujudkan Ketahanan Pangan Nasional.
- Bahri, S., Rahim, E.A. and Syarifuddin, S. (2015). Derajat deasetilasi kitosan dari cangkang kerang darah dengan penambahan naoh secara bertahap. Kovalen Jurnal Riset Kimia, 1(1)
- Czechowska-Biskup, R., Jarosińska, D., Rokita, B., Ulański, P. and Rosiak, J.M. (2012). Determination of degree of deacetylation of chitosan-comparision of methods. Progress on Chemistry and Application of Chitin and its Derivatives, (17), pp.5-20.
- Darman, P., Bahri, S. and Sumarni, N.K. (2016). Pemanfaatan Kitosan Cangkang Keong Bakau (Telescopium SP) Sebagai Pengikat Ion Logam Timbal (Pb) Dalam Larutan. Kovalen Jurnal Riset Kimia, 2(1)
- Dewi, N. L., B. S. and H. J. (2016). Penggunaan berbagai tekanan dan waktu hidrolisis pada produksi glukosamin hidroklorida dari kitosan cangkang Bekicot (Achatina fulica). Kovalen Jurnal Kimia, 2(1)
- Dompeipen. (2017). Isolasi kitin dan kitosan dari limbah kulit udang. Majalah Biam, 12(1), pp.32-39.
- Fadhli, A. (2018). Pengaruh Rasio Massa Kitin/Naoh dan Waktu Reaksi Terhadap Karakteristik Kitosan yang Disintesis dari Limbah Industri Udang Kering. Jurnal Sains Materi Indonesia 18(2): 61-67.
- Fessenden, R. (1989). Kimia Organik. Third Edition
- Hayati C. (2020). Pengaruh Berat Katalis Kitosan-Hidrotalsit Terhadap Hasil Konversi Biodesel dari Minyak Kelapa Sawit dengan Metode Refluks. Universitas Islam Indonesia.
- Hossain, M., & Iqbal, J. A. (2014). Production and Characterization of Chitosan from Shrimp Waste. Journal of the Bangladesh Agricultural University, 12(1): 153–160.
- Islam. (2017). Chitin and chitosan: structure, properties and applications in biomedical engineering. Polymers and the Environment 25(3), pp.854-866.
- Islami N, Itnawita, Anita S. (2014). Potensi abu cangkang keong mas (Pomacea canaliculata) sebagai adsorben Tembaga dalam larutan. Pekanbaru: Universitas Riau.
- Kusumaningsih. (2004). Pembuatan kitosan dari kitin cangkang bekicot (Achatina fulica). Biofarmasi, 2(2), pp.64-68.
- Lodhi, G., Kim, Y. S., Hwang, J. W., Kim, S. K., Jeon, Y. J., Je, J. Y., Ahn, C. B., Moon, S. H., Jeon, B. T., & Park, P. J. (2014). Chitooligosaccharide and its derivatives: Preparation and biological applications. BioMed Research International, 2014.
- Mursal, I.L.P., Farhamzah, F., Selistiawati, A., Meli, D.S., Chaerani, N., Muyasyar, N., Latipah, T. and Vidia, V. (2022). Uji Kualitas Kitosan dari Limbah Tulang Sotong dengan Variasi Suhu Deasetilasi. Jurnal Buana Farma, 2(2), pp.72-77.
- Mujianto. (2012). Sintesis dan Modifikasi Kitosan dari Limbah Kulit Udang Untuk Aplikasi Enhanced Oil Recovery. Institur Teknologi Bandung.
- Muyonga, J. H., Cole, C. G. B., & Duodu, K. G. (2004). Fourier transform infrared (FTIR) spectroscopic study of acid soluble collagen and gelatin from skins and bones of young and adult Nile perch (Lates niloticus). Food Chemistry, 86(3), 325–332.
- Nurhaeni., Ridhay, A., and Langgaeng. A. R. (2019). Depolymerization of chitosan from snail (Pilla ampullaceae) field shell using α-amylase. Journal of Physics : Conference series. Vol 1242 (1). IOP Publishing.
- Nurhaeni. Ridhay, A., and L. A. R. (2019). Optimization of Degree of Deacetylation of Chitosan Snail Shells (Pilla ampulaceae). Asian Journal of Chemistry, 31 2083(6)
- Official Methods of Analysis of Association of Official Analytical Chemists. (2005).
- Pavia, L., Lampman, G., and Goerge, S. K. (2001). Introduction to Spectroscopy. Introduction to Spectroscopy :a Guide for Students or Organic Chemistry. Philadhelphia: Harcourt College.
- Purnamaningsih. (2010). Pengaruh Penambahan Tepung Keong Mas (Pomacea canaliculata) dalam Ransum Terhadap Kualitas Telur Itik. Skripsi. Fakultas Pertanian Universitas Sebelas Maret Surakarta.
- Puspitasari, A. (2007). Pembuatan dan Pemanfaatan Kitosan Sulfat dari Cangkang Bekicot (Achatina fulica) sebagai adsorben zat warna Remazol Yellow FG 6. Universitas Sebelas Maret.
- Rochima, E. (2007). Karakterisasi Kitin dan Kitosan Asal Limbah Rajungan Cirebon Jawa Barat. Buletin Teknologi Hasil Pertanian X(1): 9-22.
- Santoso. (2020). Effect of acetic acid hydrolysis on the characteristics of water-soluble chitosan. IOP Conference Series: Earth and Environmental Science Vol. 414, No. 1, p. 12-21
- Shon. (2011). Effect of processing conditions on functional properties of collagen powder from skate (Raja kenojei) skins. Food Science and Biotechnology. 20(1):99-106.
- Silverstein, R. (1989). Spectrometric identification of organic compounds. Seventh Edition.
- Sulistiono. (2020). Cara Aman Mengendalikan Keong Emas. Institut Pertanian Bogor.