Main Article Content

Abstract

The increasing global population has pressured global food security, particularly regarding protein supply. Microalgae, with their high protein content, have garnered significant attention as a potential substitute for increasingly expensive animal-based proteins. Their incorporation into foods and beverages presents a promising strategy to address hunger and malnutrition. In this context, fortifying fermented dairy products such as yogurt, and cheese with microalgae offers an innovative approach to developing value-added products that combine animal-based proteins with plant-based ingredients rich in protein and bioactive compounds. This review explores the effects of incorporating microalgal and their derivatives on the physicochemical, colorimetric, and antioxidant properties, texture, rheology, sensory profile, and viability of starter cultures and probiotics in yogurt, and cheese. This literature review aims to contribute to a better understanding of the potential of microalgae as a unique food ingredient in the development of sustainable products and their beneficial health effects.

Keywords

Fermented Dairy; Functional Food; Microalgae

Article Details

How to Cite
Luwidharto, J. C. N., Kurniaditya, V. H., Rizkaprilisa, W., & Bumi, S. A. P. (2025). Potential for Microalgae as a Superfood in Fermented Dairy Products: A Review. Food Science and Technology Journal (Foodscitech), 127-140. https://doi.org/10.25139/fst.vi.9228

References

  1. Agustini, T. W., Soetrisnanto, D., & Ma’ruf, W. F. (2017). Study on chemical, physical, microbiological and sensory of yoghurt enriched by Spirulina platensis. International Food Research Journal, 24(1), 367–371.
  2. Alizadeh Khaledabad, M., Ghasempour, Z., Moghaddas Kia, E., Rezazad Bari, M., & Zarrin, R. (2020). Probiotic yoghurt functionalised with microalgae and Zedo gum: chemical, microbiological, rheological and sensory characteristics. International Journal of Dairy Technology, 73(1), 67–75. https://doi.org/10.1111/1471-0307.12625
  3. Arashiro, L. T., Boto-Ordóñez, M., Van Hulle, S. W. H., Ferrer, I., Garfí, M., & Rousseau, D. P. L. (2020). Natural pigments from microalgae grown in industrial wastewater. Bioresource Technology, 303(January), 122894. https://doi.org/10.1016/j.biortech.2020.122894
  4. Atallah, A. A., Morsy, O. M., & Gemiel, D. G. (2020). Characterization of functional low-fat yogurt enriched with whey protein concentrate, Ca-caseinate and spirulina. International Journal of Food Properties, 23(1), 1678–1691. https://doi.org/10.1080/10942912.2020.1823409
  5. Avila-Roman, J., Garda-Gil, S., Rodriguez-Luna, A., Motilva, V., & Talero, E. (2021). Anti-inflammatory and anticancer effects of microalgal carotenoids. Marine Drugs, 19(10), 1–49. https://doi.org/10.3390/md19100531
  6. Bamnya, A. (2024). A Review on Culture, Production and Use of Spirulina as Food for Humans and Feeds for Domestic Animals and Fish Padavi. In Interantional Journal of Scientific Research in Engineering and Management (Vol. 08, Issue 06). https://doi.org/10.55041/ijsrem35647
  7. Barkallah, M., Dammak, M., Louati, I., Hentati, F., Hadrich, B., Mechichi, T., Ayadi, M. A., Fendri, I., Attia, H., & Abdelkafi, S. (2017). Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. Lwt, 84, 323–330. https://doi.org/10.1016/j.lwt.2017.05.071
  8. Bashir, S., Sharif, M. K., Butt, M. S., & Shahid, M. (2016). Functional properties and amino acid profile of spirulina platensis protein isolates. In Pakistan Journal of Scientific and Industrial Research Series B: Biological Sciences (Vol. 59, Issue 1). https://doi.org/10.52763/pjsir.biol.sci.59.1.2016.12.19
  9. Bchir, B., Felfoul, I., Bouaziz, M. A., Gharred, T., Yaich, H., Noumi, E., Snoussi, M., Bejaoui, H., Kenzali, Y., Blecker, C., & Attia, H. (2019). Investigation of physicochemical, nutritional, textural, and sensory properties of yoghurt fortified with fresh and dried Spirulina (Arthrospira platensis). International Food Research Journal, 26(5), 1565–1576.
  10. Becker, E. W. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002
  11. Beheshtipour, H., Mortazavian, A. M., Haratian, P., & Khosravi-Darani, K. (2012). Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. European Food Research and Technology, 235(4), 719–728. https://doi.org/10.1007/s00217-012-1798-4
  12. Beheshtipour, H., Mortazavian, A. M., Mohammadi, R., Sohrabvandi, S., & Khosravi-Darani, K. (2013). Supplementation of spirulina platensis and chlorella vulgaris algae into probiotic fermented milks. Comprehensive Reviews in Food Science and Food Safety, 12(2), 144–154. https://doi.org/10.1111/1541-4337.12004
  13. Borowitzka, M. A. (2018). Biology of microalgae. In Microalgae in Health and Disease Prevention (Issue 1998). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811405-6.00003-7
  14. Caporgno, M. P., & Mathys, A. (2018). Trends in Microalgae Incorporation Into Innovative Food Products With Potential Health Benefits. Frontiers in Nutrition, 5(August). https://doi.org/10.3389/fnut.2018.00058
  15. Çelekli, A., Alslibi, Z. A., & Bozkurt, H. üseyin. (2019). Influence of incorporated Spirulina platensis on the growth of microflora and physicochemical properties of ayran as a functional food. Algal Research, 44(October), 101710. https://doi.org/10.1016/j.algal.2019.101710
  16. Çelekli, A., Özbal, B., & Bozkurt, H. (2024). Challenges in Functional Food Products with the Incorporation of Some Microalgae. Foods, 13(5), 1–24. https://doi.org/10.3390/foods13050725
  17. Cha, K. H., Kang, S. W., Kim, C. Y., Um, B. H., Na, Y. R., & Pan, C. H. (2010). Effect of pressurized liquids on extraction of antioxidants from chlorella vulgaris. Journal of Agricultural and Food Chemistry, 58(8), 4756–4761. https://doi.org/10.1021/jf100062m
  18. Chen, C., Tang, T., Shi, Q., Zhou, Z., & Fan, J. (2022). The potential and challenge of microalgae as promising future food sources. Trends in Food Science and Technology, 126(July), 99–112. https://doi.org/10.1016/j.tifs.2022.06.016
  19. Darwish, A. I. M. (2017). Physicochemical properties, bioactive compounds and antioxidant activity of kareish cheese fortified with spirulina platensis. World Journal of Dairy & Food Sciences, 12(2), 71–78. https://doi.org/10.5829/idosi.wjdfs.2017.71.78
  20. de Marco Castro, E., Shannon, E., & Abu-Ghannam, N. (2019). Effect of fermentation on enhancing the nutraceutical properties of Arthrospira platensis (Spirulina). Fermentation, 5(1). https://doi.org/10.3390/fermentation5010028
  21. El-Moataaz, S., Ismael, H., & Aborhyem, S. (2019). Assessment of Chemical Composition of Spirulina Platensis and its Effect on Fasting Blood Glucose and Lipid Profile in Diabetic Rats. Journal of High Institute of Public Health, 0(0), 198–209. https://doi.org/10.21608/jhiph.2019.64463
  22. Falcão, R. L., Pinheiro, V., Ribeiro, C., Sousa, I., Raymundo, A., & Nunes, M. C. (2023). Nutritional Improvement of Fresh Cheese with Microalga Chlorella vulgaris: Impact on Composition, Structure and Sensory Acceptance. Food Technology and Biotechnology, 61(2), 259–270. https://doi.org/10.17113/ftb.61.02.23.7851
  23. Fernandez, M. A., Picard-Deland, Le Barz, M., Daniel, N., & Marette, A. (2017). Yogurt and Health. In Fermented Foods in Health and Disease Prevention. Elsevier Inc. https://doi.org/10.1016/B978-0-12-802309-9.00013-3
  24. Ferreira de Oliveira, A. P., & Bragotto, A. P. A. (2022). Microalgae-based products: Food and public health. Future Foods, 6(June). https://doi.org/10.1016/j.fufo.2022.100157
  25. Figueroa-torres, G. M., Pittman, J. K., & Theodoropoulos, C. (2020). Microalgae strain catalogue A strain selection guide for microalgae users : April. https://doi.org/10.13140/RG.2.2.25845.73444
  26. Gauthier, M. R., Senhorinho, G. N. A., & Scott, J. A. (2020). Microalgae under environmental stress as a source of antioxidants. Algal Research, 52(August), 102104. https://doi.org/10.1016/j.algal.2020.102104
  27. Golmakani, M. (2018). Effect of Spirulina ( Arthrospira platensis ) powder on probiotic bacteriologically acidified feta-type cheese. 2012.
  28. Gün, D., Çelekli, A., Bozkurt, H., & Kaya, S. (2022). Optimization of biscuit enrichment with the incorporation of Arthrospira platensis: nutritional and sensory approach. Journal of Applied Phycology, 34(3), 1555–1563. https://doi.org/10.1007/s10811-022-02702-5
  29. Hernández-Urcera, J., Romero, A., Cruz, P., Vasconcelos, V., Figueras, A., Novoa, B., & Rodríguez, F. (2024). Screening of Microalgae for Bioactivity with Antiviral, Antibacterial, Anti-Inflammatory and Anti-Cancer Assays. Biology, 13(4), 1–19. https://doi.org/10.3390/biology13040255
  30. Hernández, H., Nunes, M. C., Prista, C., & Raymundo, A. (2022). Innovative and Healthier Dairy Products through the Addition of Microalgae: A Review. Foods, 11(5). https://doi.org/10.3390/foods11050755
  31. Hosseinkhani, N., McCauley, J. I., & Ralph, P. J. (2022). Key challenges for the commercial expansion of ingredients from algae into human food products. Algal Research, 64(April), 102696. https://doi.org/10.1016/j.algal.2022.102696
  32. Katsaros, G. (2021). Incorporation of Spirulina platensis on Traditional Greek Soft Cheese with Respect to Its Nutritional and Sensory Perspectives †. 1–6.
  33. Koru, E. (2012). Earth Food Spirulina (Arthrospira): Production and Quality Standarts. Food Additive, May. https://doi.org/10.5772/31848
  34. Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D. T., & Show, P. L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16–24. https://doi.org/10.1016/j.fshw.2019.03.001
  35. Luwidharto, J. C. N., Rahayu, E. S., Suroto, D. A., Wikandari, R., Ulfah, A., & Utami, T. (2022). Effects of Spirulina platensis Addition on Growth of Lactobacillus plantarum Dad 13 and Streptococcus thermophilus Dad 11 in Fermented Milk and Physicochemical Characteristics of the Product. Applied Food Biotechnology, 9(3), 205–216. https://doi.org/10.22037/afb.v9i3.37013
  36. Martelli, F., Alinovi, M., Bernini, V., Gatti, M., & Bancalari, E. (2020). Arthrospira platensis as natural fermentation booster for milk and soy fermented beverages. Foods, 9(3). https://doi.org/10.3390/foods9030350
  37. Matos, J., Cardoso, C., Bandarra, N. M., & Afonso, C. (2017). Microalgae as healthy ingredients for functional food: A review. Food and Function, 8(8), 2672–2685. https://doi.org/10.1039/c7fo00409e
  38. Maulida Safitri, N., Yuli Herawati, E., & Liang Hsu, J. (2017). Antioxidant Activity of Purified Active Peptide Derived from Spirulina platensis Enzymatic Hydrolysates. Research Journal of Life Science, 4(2), 119–128. https://doi.org/10.21776/ub.rjls.2017.004.02.5
  39. Meybeck, A., Québec (Province). Ministère des relations internationales, & Food and Agriculture Organization of the United Nations. (2017). Food security and nutrition in the age of climate change : proceedings of the international symposium organized by the government of Québec in collaboration with FAO, Québec City, September 24-27, 2017.
  40. Mohamed, A. G., Abo-El-Khair, B. E., & Shalaby, S. M. (2013). Quality of novel healthy processed cheese analogue enhanced with marine microalgae Chlorella vulgaris biomass. World Applied Sciences Journal, 23(7), 914–925. https://doi.org/10.5829/idosi.wasj.2013.23.07.13122
  41. Muhaemin, M., Richardus, D., & Kaswadji, F. (2010). Biomass Nutrient Profiles of Marine Microalgae Dunaliella salina. Jurnal Penelitian Sains, 13(D), 13313.
  42. Pan-Utai, W., Atkonghan, J., Onsamark, T., & Imthalay, W. (2020). Effect of arthrospira microalga fortification on physicochemical properties of yogurt. Current Research in Nutrition and Food Science, 8(2), 531–540. https://doi.org/10.12944/CRNFSJ.8.2.19
  43. Pan-utai, W., & Iamtham, S. (2019). Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochemistry, 82(February), 189–198. https://doi.org/10.1016/j.procbio.2019.04.014
  44. Rani, K., Sandal, N., & Sahoo, P. K. (2018). A comprehensive review on chlorella- its composition , health benefits , market and regulatory scenario. 7(7), 584–589.
  45. Rani, R., & Singh, B. (2012). Factors Affecting Syneresis In Yoghurt: A Review. Indian Journal Dairy and Bioscience, 23, 1–9.
  46. Safi, C., Cabas Rodriguez, L., Mulder, W. J., Engelen-Smit, N., Spekking, W., van den Broek, L. A. M., Olivieri, G., & Sijtsma, L. (2017). Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana. Bioresource Technology, 239, 204–210. https://doi.org/10.1016/j.biortech.2017.05.012
  47. Silva, M. R. O. B. da, Moura, Y. A. S., Converti, A., Porto, A. L. F., Viana Marques, D. de A., & Bezerra, R. P. (2021). Assessment of the potential of Dunaliella microalgae for different biotechnological applications: A systematic review. Algal Research, 58(June), 102396. https://doi.org/10.1016/j.algal.2021.102396
  48. Suetsuna, K., & Chen, J. R. (2001). Identification of antihypertensive peptides from peptic digest of two microalgae, Chlorella vulgaris and Spirulina platensis. Marine Biotechnology, 3(4), 305–309. https://doi.org/10.1007/s10126-001-0012-7
  49. Terzioğlu, M. E., & Bakirci, İ. (2023). Comparison of Amino Acid Profile, ACE Inhibitory Activity, and Organic Acid Profile of Cow and Goat Yogurts Produced with Lactobacillus acidophilus LA-5, Bifidobacterium animalis subsp. lactis BB-12, and Classical Yogurt Culture. Probiotics and Antimicrobial Proteins, 1566–1582. https://doi.org/10.1007/s12602-023-10123-0
  50. UNICEF. (2021). The State of Food Security and Nutrition in the World 2021. FAO.
  51. UNICEF dan Kementerian Kesehatan Republik Indonesia. (2023). Menuju Masa Depan Indonesia Bebas Masalah Kekurangan Gizi. Www.Unicef.Org, 1–12.
  52. Ursu, A. V., Marcati, A., Sayd, T., Sante-Lhoutellier, V., Djelveh, G., & Michaud, P. (2014). Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris. Bioresource Technology, 157, 134–139. https://doi.org/10.1016/j.biortech.2014.01.071
  53. Wu, H. L., Wang, G. H., Xiang, W. Z., Li, T., & He, H. (2016). Stability and Antioxidant Activity of Food-Grade Phycocyanin Isolated from Spirulina platensis. International Journal of Food Properties, 19(10), 2349–2362. https://doi.org/10.1080/10942912.2015.1038564
  54. Zebib, B., & Merah, O. (2014). Morphology , composition , production , processing and applications of Chlorella vulgaris : A review. July. https://doi.org/10.1016/j.rser.2014.04.007

DB Error: Unknown column 'Array' in 'where clause'