Main Article Content
Abstract
The pineapple peel, as organic waste, is still rarely used and processed widely, even though the benefits of pineapple peel have been studied quite extensively. Pineapple peel contains bioactive compounds that have antioxidant activity, such as flavonoids and phenolic compounds as a source of natural antioxidants. The extraction method using Soxhlet requires less solvent and a shorter time due to increasing temperature. This research aims to determine the optimum method for extracting antioxidant compounds using Soxhlet extraction. Soxhlet extraction was obtained using ethanol solvent at various concentrations of 0%, 55%, and 96%. Quantitative tests were carried out to determine the flavonoid and phenol content. The antioxidant activity test was analyzed using the DPPH free radical scavenger method. The pineapple peel extract resulted in optimum condition in 96% ethanol due to obtaining the highest yield, 11.48%, the highest flavonoid content, 11.99 mg QE/g, and strong antioxidant activity. The phenolic content was achieved in the highest amount after being extracted in 55% ethanol. The pineapple peel showed the potential effect of inhibiting lipid oxidation in cooking oil. The addition of the extracted sample could lessen the formation of free fatty acid in cooking oil by about 38.4%. This research revealed that pineapple peel extract could be a promising natural antioxidant in future applications.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Alaydrus, S. maryam, Widayat, W., & Rijai, L. (2019). Gambaran Hasil Aktivitas Antioksidan Berberapa Perlakuan Teknik Preparasi Pembuatan Konsentrasi Ekstrak Kulit Buah Nanas (Ananas comosus L.Merr) Menggunakan Senyawa DPPH (1,1-diphenyl-2-picrylhydrazyl). Proceeding of Mulawarman Pharmaceuticals Conferences, 10, 44–47. https://doi.org/10.25026/mpc.v10i1.365
- Azizah, I. N., Budiandari, R. U., & WDP, A. M. (2023). Effect of Osmosis Time and Sucrose Concentration on The Antioxidant Activity of Red Dragon Fruit Juice (Hylocereus polyrhizus). Journal of Tropical Food and Agroindustrial Technology, 4(01), 6–12. https://doi.org/10.21070/jtfat.v4i01.1608
- Bellucci, E. R. B., Bis-Souza, C. V., Domínguez, R., Bermúdez, R., & Barretto, A. C. da S. (2022). Addition of Natural Extracts with Antioxidant Function to Preserve the Quality of Meat Products. Biomolecules, 12(10), 1506. https://doi.org/10.3390/biom12101506
- Chaves, J. O., de Souza, M. C., da Silva, L. C., Lachos-Perez, D., Torres-Mayanga, P. C., Machado, A. P. da F., Forster-Carneiro, T., Vázquez-Espinosa, M., González-de-Peredo, A. V., Barbero, G. F., & Rostagno, M. A. (2020). Extraction of Flavonoids From Natural Sources Using Modern Techniques. Frontiers in Chemistry, 8. https://doi.org/10.3389/fchem.2020.507887
- Di Pietro, M. E., Mannu, A., & Mele, A. (2020). NMR Determination of Free Fatty Acids in Vegetable Oils. Processes, 8(4), 410. https://doi.org/10.3390/pr8040410
- Fadda, A., Sanna, D., Sakar, E. H., Gharby, S., Mulas, M., Medda, S., Yesilcubuk, N. S., Karaca, A. C., Gozukirmizi, C. K., Lucarini, M., Lombardi-Boccia, G., Diaconeasa, Z., & Durazzo, A. (2022). Innovative and Sustainable Technologies to Enhance the Oxidative Stability of Vegetable Oils. Sustainability, 14(2), 849. https://doi.org/10.3390/su14020849
- Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., & Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378, 131918. https://doi.org/10.1016/j.foodchem.2021.131918
- Hidalgo, G.-I., & Almajano, M. (2017). Red Fruits: Extraction of Antioxidants, Phenolic Content, and Radical Scavenging Determination: A Review. Antioxidants, 6(1), 7. https://doi.org/10.3390/antiox6010007
- Fadhil, K. A., Suryati, T. & Jayanegara., A. (2023). Comparison Between Natural and Synthetic Antioxidants in Beef Products: A MetaAnalysis. Jurnal Ilmu Produksi Dan Teknologi Hasil Peternakan, 11(1), 19–26. https://doi.org/10.29244/jipthp.11.1.19-26
- Lee, N. Y., Yunus, M. A. C., Idham, Z., Ruslan, M. S. H., Aziz, A. H. A., & Irwansyah, N. (2016). Extraction and identification of bioactive compounds from agarwood leaves. IOP Conference Series: Materials Science and Engineering, 162(1), 012028. https://doi.org/10.1088/1757-899X/162/1/012028
- Liu, Z., Liu, M., Lyu, C., Li, B., Meng, X., Si, X., & Shu, C. (2022). Effect of Heat Treatment on Oxidation of Hazelnut Oil. Journal of Oleo Science, 71(12), ess22131. https://doi.org/10.5650/jos.ess22131
- Lourenço, S. C., Campos, D. A., Gómez-García, R., Pintado, M., Oliveira, M. C., Santos, D. I., Corrêa-Filho, L. C., Moldão-Martins, M., & Alves, V. D. (2021). Optimization of Natural Antioxidants Extraction from Pineapple Peel and Their Stabilization by Spray Drying. Foods, 10(6), 1255. https://doi.org/10.3390/foods10061255
- Soenarno, M. S., Arifin, M., Prabowo, S., Salundik, Murtini, D., Alifiya, Q. & Wihansah, R. R. S. (2024). Evaluation of Acid Value, Free Fatty Acids, and Malondialdehyde (MDA) Content in Chevon Fat: A Pre- and Post-Roasting Comparison. Jurnal Ilmu Produksi Dan Teknologi Hasil Peternakan, 12(2), 101–104. https://doi.org/10.29244/jipthp.12.2.101-104
- Mancini, A., Imperlini, E., Nigro, E., Montagnese, C., Daniele, A., Orrù, S., & Buono, P. (2015). Biological and Nutritional Properties of Palm Oil and Palmitic Acid: Effects on Health. Molecules, 20(9), 17339–17361. https://doi.org/10.3390/molecules200917339
- Manongko, P. S., Sangi, M. S., & Momuat, L. I. (2020). Uji Senyawa Fitokimia dan Aktivitas Antioksidan Tanaman Patah Tulang (Euphorbia tirucalli L.). Jurnal MIPA, 9(2), 64. https://doi.org/10.35799/jmuo.9.2.2020.28725
- Muadifah, A., Tilarso, D. P., Putri, A. E., & Sowe, M. S. (2024). Antioxidant Effectiveness Test of Kapok Leaf Extract Moisturizer (Ceiba Pentandra (L.) Gaertn.) with DPPH Method. Chempublish Journal, 8(1), 1–10. https://doi.org/10.22437/chp.v8i1.33234
- Osorio-Tobón, J. F. (2020). Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology, 57(12), 4299–4315. https://doi.org/10.1007/s13197-020-04433-2
- Phuyal, N., Jha, P. K., Raturi, P. P., & Rajbhandary, S. (2020). Total Phenolic, Flavonoid Contents, and Antioxidant Activities of Fruit, Seed, and Bark Extracts of Zanthoxylum armatum DC. The Scientific World Journal, 2020, 1–7. https://doi.org/10.1155/2020/8780704
- Prescha, A., Grajzer, M., Dedyk, M., & Grajeta, H. (2014). The Antioxidant Activity and Oxidative Stability of Cold‐Pressed Oils. Journal of the American Oil Chemists’ Society, 91(8), 1291–1301. https://doi.org/10.1007/s11746-014-2479-1
- Sopianti, D. S., Herlina, H., & Saputra, H. T. (2017). PENETAPAN KADAR ASAM LEMAK BEBAS PADA MINYAK GORENG. Jurnal Katalisator, 2(2), 100. https://doi.org/10.22216/jk.v2i2.2408
- Stanković, M. S. (2011). TOTAL PHENOLIC CONTENT, FLAVONOID CONCENTRATION AND ANTIOXIDANT ACTIVITY OF Marrubium peregrinum L. EXTRACTS. In Kragujevac J. Sci (Vol. 33).
- Wang, D., Xiao, H., Lyu, X., Chen, H., & Wei, F. (2023). Lipid oxidation in food science and nutritional health: A comprehensive review. Oil Crop Science, 8(1), 35–44. https://doi.org/10.1016/j.ocsci.2023.02.002
- Yusof, N., Abdul Munaim, M. S., & Kutty, R. V. (2020). The Effects of Different Ethanol Concentration on Total Phenolic and Total Flavonoid Content In Malaysian Propolis. IOP Conference Series: Materials Science and Engineering, 991(1), 012033. https://doi.org/10.1088/1757-899X/991/1/012033
- Zhang, Q.-W., Lin, L.-G., & Ye, W.-C. (2018). Techniques for extraction and isolation of natural products: a comprehensive review. Chinese Medicine, 13(1), 20. https://doi.org/10.1186/s13020-018-0177-x