Chili Price Prediction One Year Ahead Using the Gated Recurrent Unit Method


Abstract
Chili is an important commodity in the Indonesian economy, and it experiences significant price fluctuations. This is due to several factors, such as demand and supply in the market and climate and temperature factors. The prediction of chili prices is important to minimize the risk of loss to the community and the government. Previous studies have used ARIMA, SVR, MLP, and RNN methods to predict chili prices. However, these methods are still considered less effective, especially in processing large amounts of information. In this study, the Gated Recurrent Unit (GRU) method is used as an alternative, and this method is designed to overcome obstacles to remembering long information. The results show that GRU provides excellent prediction performance, with a MAPE value below 10% for all types of chili peppers. The test results that have been carried out show that the size of the window data affects the accuracy of predicting chili prices. In addition, the combination of hyperparameters, namely hidden neurons and epochs, also influences the accuracy of predicting chili prices. The lowest MAPE value is obtained in predicting large red chili pepper prices of 4.850% with 512 hidden neurons and 100 epochs. Then, a MAPE of 6.434% was obtained using 512 hidden neurons and 100 epochs to predict curly red chili pepper prices. In predicting the price of green bird's eye pepper, a MAPE of 7.288% is obtained with a combination of 512 hidden neurons and 150 epochs. Finally, the lowest MAPE value is obtained in predicting the price of red bird's eye pepper at 6.452% with a combination of 512 hidden neurons and 150 epochs.
References
S. Kumala Zahra, W. Andini, M. Abdurrahman, and V. B. Sebayang, “Analisis Fluktuasi Harga Terhadap Faktor-Faktor Yang Mempengaruhi Produktivitas Usaha Tani Cabai Merah di Indonesia,” Jurnal Riset dan Inovasi Manajemen, vol. 2, no. 2, pp. 162–172, 2024, doi: 10.59581/jrim-widyakarya.v2i2.3526.
Darmansah and N. W. Wardani, “Analisa Penyebab Kerusakan Tanaman Cabai Menggunakan Metode K-Means,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 2, pp. 126–134, 2020.
S. A. Wulandari, “Fluktuasi Harga Cabai Merah di Masa Pandemi Covid 19 di Kota Jambi,” Jurnal MeA (Media Agribisnis), vol. 5, no. 2, p. 112, Oct. 2020, doi: 10.33087/mea.v5i2.82.
A. Padapi, A. Mursalat, and A. R. Hasbi, “Disparitas Cabai Rawit Merah di Indonesia,” AGRIOVET, vol. 5, no. 1, 2022.
N. Husna, Yusdiana, and N. Desparita, “Fluktuasi Harga Cabai Merah Keriting (Capsicum annum L.) di Provinsi Aceh,” Jurnal Sains Pertanian, vol. 8, no. 2, pp. 58–62, 2024.
L. Susanti, S. J. Pririzki, Z. Zeleansi, and D. Y. Dalimunthe, “Prediksi Harga Cabai Rawit Merah Sebagai Kebutuhan Pangan Masyarakat di Kota Pangkalpinang,” 2022.
C. V. M. Sihombing, S. Martha, and N. M. Huda, “Analisis Metode Hybrid ARIMA-SVR Pada Indeks Harga Saham Gabungan,” 2022.
D. Sepri, A. Fauzi, R. Wandira, O. S. Riza, and Y. F. Wahyuni, “Prediksi Harga Cabai Merah Menggunakan Support Vector Regression,” Computer Based Information System Journal, vol. 08, 2020.
K. H. Suradiradja, “Algoritme Machine Learning Multi-Layer Perceptron dan Recurrent Neural Network untuk Prediksi Harga Cabai Merah Besar di Kota Tangerang,” Faktor Exacta, vol. 14, no. 4, pp. 1979–276, 2021, doi: 10.30998/faktorexacta.v14i4.10376.
Y. Shi, X. Song, and G. Song, "Productivity Prediction of A Multilateral-Well Geothermal System Based on A Long Short-Term Memory and Multilayer Perceptron Combinational Neural Network," Appl Energy, vol. 282, Jan. 2021, doi: 10.1016/j.apenergy.2020.116046.
M. R. Pahlawan, A. Djunaidy, and R. A. Vinarti, “Prediksi Indeks Harga Saham Menggunakan Model Hibrida Recurrent Neural Network Dan Genetic Algorithm,” Jurnal Teknik Informatika dan Sistem Informasi, vol. 9, no. 4, 2022.
C. T. Emanuella, A. Lawi, and Hendra, “Model Prediksi Harga Saham Apple Inc Pada Beberapa Bursa Efek Menggunakan Metode Multivariate Gated Recurrent Unit,” Prosiding Seminar Nasional Teknik Elektro dan Informatika (SNTEI) , 2022.
M. A. Sholeh and R. Hidayat, “Perbandingan Model LSTM dan GRU untuk Memprediksi Harga Minyak Goreng di Indonesia,” EDUSAINTEK: Jurnal Pendidikan, Sains dan Teknologi, vol. 9, no. 3, pp. 800–811, Sep. 2022, doi: 10.47668/edusaintek.v9i3.593.
A. Aulia, A. M. Elhanafi, and H. Dafitri, Prosiding SNASTIKOM: Seminar Nasional Teknologi Informasi & Komunikasi Implementasi Algoritma Gated Recurrent Unit Dalam Melakukan Prediksi Harga Kelapa Sawit Dengan Memanfaatkan Model Recurrent Neural Network (RNN). 2021.
Samsudin, A. M. Harahap, and S. Fitrie, “Implementasi Gated Recurrent Unit (GRU) untuk Prediksi Harga Saham Bank Konvensional di Indonesia,” JISTech (Journal of Islamic Science and Technology) JISTech, vol. 6, no. 2, pp. 42–49, 2021.
A. Yunizar, T. Rismawan, and D. M. Midyanti, “Penerapan Metode Recurrent Neural Network Model Gated Recurrent Unit untuk Prediksi Harga Cryptocurrency,” Coding: Jurnal Komputer dan Aplikasi, vol. 11, no. 01, 2023.
S. Khalis, A. S. Sunge, S. R. Riady, and A. Z. Kamalia, “Perbandingan Algoritma Linear Regression, LSTM, dan GRU Dalam Memprediksi Harga Saham Dengan Model Time Series,” SEMINASTIKA, vol. 3, no. 1, pp. 39–46, Nov. 2021, doi: 10.47002/seminastika.v3i1.275.
C. Zai, “Implementasi Data Mining sebagai Pengolahan Data,” JURNAL PORTAL DATA, vol. 2, no. 3, pp. 2022–2023.
T. B. Sianturi, I. Cholissodin, and N. Yudistira, “Penerapan Algoritma Long Short-Term Memory (LSTM) berbasis Multi Fungsi Aktivasi Terbobot dalam Prediksi Harga Ethereum,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 7, no. 3, pp. 1101–1107, 2023.
R. G. Whendasmoro and Joseph, “Analisis Penerapan Normalisasi Data Dengan Menggunakan Z-Score Pada Kinerja Algoritma K-NN,” JURIKOM (Jurnal Riset Komputer), vol. 9, no. 4, p. 872, Aug. 2022, doi: 10.30865/jurikom.v9i4.4526.
A. Nilsen, “Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45,” Jurnal Statistika dan Aplikasinya, vol. 6, no. 1, 2022.
G. Q. O. Pratamasunu, F. N. Fajri, and P. K. Sari, “Deteksi Tangan Otomatis Pada Video Percakapan Bahasa Isyarat Indonesia Menggunakan Metode Deep Gated Recurrent Unit (GRU),” Jurnal Komputer Terapan, vol. 8, no. 1, pp. 186–193, 2022.
A. Dutta, S. Kumar, and M. Basu, "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," Journal of Risk and Financial Management, vol. 13, no. 2, Feb. 2020, doi: 10.3390/jrfm13020023.
I. Nabillah and I. Ranggadara, “Mean Absolute Percentage Error untuk Evaluasi Hasil Prediksi Komoditas Laut,” JOINS (Journal of Information System), vol. 5, no. 2, pp. 250–255, Nov. 2020, doi: 10.33633/joins.v5i2.3900.
A. D. Milniadi and N. O. Adiwijaya, “Analisis Perbandingan Model ARIMA dan LSTM dalam Peramalan Harga Penutupan Saham (Studi Kasus: 6 Kriteria Kategori Saham Menurut Peter Lynch),” SIBATIK JOURNAL: Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, dan Pendidikan, vol. 2, no. 6, pp. 1683–1692, May 2023, doi: 10.54443/sibatik.v2i6.798.
R. M. Fauzi and D. I. Mulyana, “Implementasi Data Mining Menggunakan Metode Least Square untuk Memprediksi Penjualan Lampu LED pada PT. Sumber Dinamika Solusitama,” Jurnal Sosial dan Teknologi (SOSTECH), vol. 1, no. 8, 2021.
R. E. Wahyuni, “Optimasi Prediksi Inflasi dengan Neural Network pada Tahap Windowing: Adakah Pengaruh Perbedaan Window Size?,” Technologia, vol. 12, no. 3, 2021.
Dwi Kartini, Friska Abadi, and Triando Hamonangan Saragih, "Prediksi Tinggi Permukaan Air Waduk Menggunakan Artificial Neural Network Berbasis Sliding Window," Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 5, no. 1, pp. 39–44, Feb. 2021, doi: 10.29207/resti.v5i1.2602.
Copyright (c) 2024 Certa Yustitia, Novrido Charibaldi

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with Inform: Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi agree to the following terms:
-
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
-
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
-
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.