Estimasi Tingkat Aktivasi Virus COVID-19 dengan Menggunakan Metode Kalman Filter (Studi Kasus: di Provinsi Jawa Timur)
Abstract
Abstract
COVID-19 is a concern in several countries because the rate of spread is fast enough to cause many deaths. COVID-19 is a disease caused by SARS-Cov-2. In this study, the SARS-Cov-2 activation rate was estimated using the Kalman Filter. The SARS-Cov-2 activation rate is the rate of change of the exposed class (Exposed) who completed the incubation period into the infected class (Infected). The spread of the COVID-19 disease was approached by the SEIR mathematical model. The SARS-Cov-2 activation rate is a parameter of SEIR's mathematical model of COVID-19 spread. The simulation results show that the SARS-Cov-2 activation rate in East Java in October 2021 is 0.563. The RMSE value that indicates the level of accuracy of the estimation process is 0,08.
Keywords: COVID-19, Parameter Estimation, Kalman Filter, East Java
Abstrak
COVID-19 menjadi perhatian di beberapa negara karena tingkat penyebarannya cukup cepat hingga mengakibatkan banyak kematian. COVID-19 merupakan penyakit yang disebabkan oleh virus SARS-Cov-2. Pada penelitian ini, tingkat aktivasi SARS-Cov-2 diestimasi menggunakan Kalman Filter. Tingkat aktivasi SARS-Cov-2 adalah tingkat perubahan individu terpapar (Exposed) yang selesai masa inkubasi dan masuk ke dalam kelas yang terinfeksi (Infected). Penyebaran penyakit COVID-19 didekati dengan model matematika SEIR. Tingkat aktivasi SARS-Cov-2 merupakan parameter dari model matematika penyebaran COVID-19 SEIR. Hasil simulasi menunjukkan bahwa tingkat aktivasi SARS-Cov-2 di Jawa Timur pada Oktober 2021 bernilai 0,563. Tingkat keakuratan proses estimasi ditunjukkan melalui nilai RMSE sebesar 0,08.
Kata Kunci: COVID-19, Estimasi Parameter, Kalman Filter, Provinsi Jawa Timur.
Downloads
References
C. Godsil and G. F. Royle, Algebraic Graph Theory, 1st ed., vol. 207. New York: Springer Science & Business Media, 2001.
Satgas Covid-19, “Data Covid-19 di Indonesia,” Satuan Tugas Penanganan COVID-19, 2020. https://covid19.go.id/.
M. Jannah, M. A. Karim, and Y. Yulida, “Analisis kestabilan model seir untuk penyebaran covid-19 dengan parameter vaksinasi,” BAREKENG J. Ilmu Mat. dan Terap., vol. 15, no. 3, pp. 535–542, 2021, doi: https://ojs3.unpatti.ac.id/index.php/barekeng/article/view/3374.
X. Chen, J. Li, C. Xiao, and P. Yang, “Numerical solution and parameter estimation for uncertain SIR model with application to COVID-19,” Fuzzy Optim. Decis. Mak., vol. 20, no. 2, pp. 189–208, 2021.
C. M. Trudinger, M. R. Raupach, P. J. Rayner, and I. G. Enting, “Using the Kalman filter for parameter estimation in biogeochemical models,” Environmetrics Off. J. Int. Environmetrics Soc., vol. 19, no. 8, pp. 849–870, 2008.
Z. Ahmad, M. Arif, F. Ali, I. Khan, and K. S. Nisar, “A report on COVID-19 epidemic in Pakistan using SEIR fractional model,” Sci. Rep., vol. 10, no. 1, pp. 1–14, 2020.
L. Kleeman, “„Understanding and Appliying Kalman Filter,“,” Derpartement Electr. Comput. Syst. Eng. Clayt., 2007.
S. Subchan, A. Maulana Syafii, T. Asfihani, and D. Adzkiya, “Modified Kalman filter-based model predictive control for ship heading control with probabilistic constraints,” Syst. Sci. & Control Eng., vol. 9, no. 1, pp. 109–116, 2021.
Pemprov Jatim, “Data Covid-19 Provinsi Jawa Timur,” 2020. infocovid19.jatimprov.go.id.
A. Hasan, E. R. M. Putri, H. Susanto, and N. Nuraini, “Data-driven modeling and forecasting of COVID-19 outbreak for public policy making,” ISA Trans., 2021.