Recency Matematis Mahasiswa Calon Guru Matematika dalam Menyelesaikan Masalah Bergambar

  • Puguh Darmawan Universitas Negeri Malang
  • Barep Yohanes Universitas PGRI Banyuwangi
Abstract views: 52 , 5224 publish (Bahasa Indonesia) downloads: 29

Abstract

 

Recency is a conclusion that is preceded by similar events. Recency is very important for prospective mathematics teacher students because it avoids thinking errors/cognitive biases. This research is a qualitative research that aims to determine the emergence of positive and negative recency in prospective students of mathematics teachers. The research was conducted by providing pictorial problems for prospective mathematics teacher students and based on indicators grouped into positive recency and negative recency. The results of the study indicate that students who experience positive recency occur because of learning experiences and similar events that are believed to be. Negative recency occurs because of doubtful learning experiences and similar events.

Keywords: mathematical recency, teacher candidate, pictorial problem, probability

Downloads

Download data is not yet available.

References

NCTM, “EXECUTIVE SUMMARY PRINCIPLES AND STANDARTS FOR SCHOOL MATHEMATICS,” J. Equine Vet. Sci., vol. 18, no. 11, p. 719, 2010, doi: 10.1016/s0737-0806(98)80482-6.

S. Wilujeng and E. Sudihartinih, “KEMAMPUAN BERPIKIR KRITIS MATEMATIS SISWA SMP DITINJAU DARI GAYA BELAJAR SISWA,” JPMI (Jurnal Pendidik. Mat. Indones., vol. 6, no. 2, pp. 53–63, 2021.

S. N. Afifah and A. B. Kusuma, “PENTINGNYA KEMAMPUAN SELF-EFFICACY MATEMATIS SERTA BERPIKIR KRITIS PADA PEMBELAJARAN DARING MATEMATIKA,” J. MathEdu (Mathematic Educ. Journal), vol. 4, no. 2, pp. 313–320, 2021, doi: 10.37081/mathedu.v4i2.2642.

R. Tarigan, “PERKEMBANGAN MATEMATIKA DALAM FILSAFAT DAN ALIRAN FORMALISME YANG TERKANDUNG DALAM FILSAFAT MATEMATIKA,” Sepren, vol. 2, no. 2, pp. 17–22, 2021, doi: 10.36655/sepren.v2i2.508.

B. Yohanes and F. I. Yusuf, “TEORI BEBAN KOGNITIF: PETA KOGNITIF DALAM PEMECAHAN MASALAH PADA MATEMATIKA SEKOLAH,” AKSIOMA J. Progr. Stud. Pendidik. Mat., vol. 10, no. 4, pp. 2215–2224, 2021, doi: https://doi.org/10.24127/ajpm.v10i4.4033.

O. R. U. P. Siti Inganah, Arini Isma Nabila, “KESALAHAN KONSTRUKSI KONSEP MATEMATIS DALAM PROSES REPRESENTASI VISUAL MAHASISWA,” vol. 10, no. 3, pp. 1776–1786, 2021.

W. De Neys, DUAL PROCESS THEORY 2.0. 2018.

E. Gillard, W. Van Dooren, W. Schaeken, and L. Verschaffel, “DUAL PROCESSES IN THE PSYCHOLOGY OF MATHEMATICS EDUCATION AND COGNITIVE PSYCHOLOGY,” Hum. Dev., pp. 95–108, 2009, doi: 10.1159/000202728.

T. Tahir and M. Marniati, “ANALISIS KEMAMPUAN PEMAHAMAN KONSEP MATEMATI DAN KESALAHAN MENYELESAIKAN SOAL CERITA MENGGUNAKAN PROSEDUR NEWMAN,” AKSIOMA J. Progr. Stud. Pendidik. Mat., vol. 10, no. 4, p. 2765, 2021, doi: 10.24127/ajpm.v10i4.4289.

B. Yohanes and P. Darmawan, “RESILIENSI MATEMATIS CALON GURU MATEMATIKA DALAM PEMBELAJARAN BERBASIS MASALAH,” J. Kaji. Pembelajaran Mat., vol. 6, no. 2, pp. 96–107, 2022.

R. A. Sari and R. Untarti, “KEMAMPUAN BERPIKIR KREATIF MATEMATIS DAN RESILIENSI MATEMATIS,” Mandalika Math. Educ. J., vol. 3, no. 1, pp. 30–39, 2021, doi: 10.29303/jm.v3i1.2577.

T. Dewolf, W. Van Dooren, E. E. Cimen, and L. Verschaffel, “THE IMPACT OF ILLUSTRATIONS AND WARNINGS ON SOLVING MATHEMATICAL WORD PROBLEMS REALISTICALLY,” J. Exp. Educ., vol. 82, no. 1, pp. 103–120, 2014, doi: 10.1080/00220973.2012.745468.

B. Bago and W. De Neys, “FAST LOGIC ?: EXAMINING THE TIME COURSE ASSUMPTION OF DUAL PROCESS THEORY,” Cognition, vol. 158, pp. 90–109, 2017, doi: 10.1016/j.cognition.2016.10.014.

V. Giardino and J. Wöpking, “ASPECT SEEING AND MATHEMATICAL REPRESENTATIONS,” Avant, vol. 10, no. 2, pp. 1–19, 2019, doi: 10.26913/AVANT.2019.02.27.

P. Darmawan, “STUDENTS ANALYTICAL THINKING IN SOLVING PROBLEMS OF POLYGON AREAS,” Kontinu J. Penelit. Didakt. Mat., vol. 4, no. 1, p. 17, 2020, doi: 10.30659/kontinu.4.1.17-32.

S. Howarth, S. Handley, and V. Polito, “UNCONTROLLED LOGIC: INTUITIVE SENSITIVITY TO LOGICAL STRUCTURE IN RANDOM RESPONDING,” Think. Reason., vol. 28, no. 1, pp. 61–96, 2022, doi: 10.1080/13546783.2021.1934119.

P. E. P. Cahirati, A. P. Makur, and S. Fedi, “ANALISIS KESULITAN BELAJAR SISWA DALAM PEMBELAJARAN MATEMATIKA YANG MENGGUNAKAN PENDEKATAN PMRI,” Mosharafa J. Pendidik. Mat., vol. 9, no. 2, pp. 227–238, 2020, doi: 10.31980/mosharafa.v9i2.576.

M. Zainudin, A. D. Utami, and S. Noviana, “ANALISIS KESULITAN SISWA DALAM MENYELESAIKAN SOAL PELUANG DITINJAU DARI KONEKSI MATEMATIS,” Suska J. Math. Educ., vol. 7, no. 1, pp. 41–48, 2021.

N. Adjie, S. U. Putri, and F. Dewi, “PENINGKATAN KEMAMPUAN KONEKSI MATEMATIKA MELALUI PENDIDIKAN MATEMATIKA REALISTIK (PMR) PADA ANAK USIA DINI,” J. Obs. J. Pendidik. Anak Usia Dini, vol. 5, no. 2, pp. 1325–1338, 2020, doi: 10.31004/obsesi.v5i2.846.

E. S. Agusta, “PENINGKATAN KEMAMPUAN MATEMATIS SISWA MELALUI PENDEKATAN PENDIDIKAN MATEMATIKA REALISTIK,” Histogram J. Pendidik. Mat., vol. 2, no. 2, pp. 145–165, 2020.

F. Akase, “PENINGKATAN AKTIVITAS DAN HASIL BELAJAR SISWA PADA PEMBELAJARAN MATEMATIKA REALISTIK DI KELAS V SDN 8 SUWAWA,” Aksara J. Ilmu Pendidik. Nonform., vol. 7, no. 3, p. 1223, 2021, doi: 10.37905/aksara.7.3.1223-1230.2021.

P. Darmawan, Purwanto, I. N. Parta, and Susiswo, “THE LEVELS OF STUDENTS’ FEELING OF RIGHTNESS (FOR) IN SOLVING POLYGON PERIMETER PROBLEMS,” Int. J. Instr., vol. 13, no. 2, pp. 549–566, 2020, doi: 10.29333/iji.2020.13238a.

P. Darmawan, P. Purwanto, I. N. Parta, and S. Susiswo, “TEACHER INTERVENTIONS TO INDUCE STUDENTS ’ AWARENESS IN CONTROLLING THEIR INTUITION,” Bolema - Math. Educ. Bull., vol. 35, no. 70, pp. 745–765, 2021, doi: http://dx.doi.org/10.1590/1980-4415v35n70a10.

Published
2022-12-07
Section
Articles