KLASTERING SUARA BERDASARKAN GENDER MENGGUNAKAN ALGORITMA K-MEANS DARI HASIL EKSTRAKSI FFT (Fast Fourier Transform)
Abstract views: 551
,
PDF (Bahasa Indonesia) downloads: 761
Abstract
Speech recognition process is kind of applied Technique of digital sign process that is widely used for many applications, for example technology in the field of telecommunications which isn't only able to provide for serving for sending text data but also it can serve for sending data using sound. From technology development of signal process emerges new idea to make application program by creating new sofware to display sound signal characteristic based on frequency and highest magnitude. Clustering is part of pattern recognition science which is made for system that can perform into a groups. In this research, the researcher will distinguish between male voice or female voice. Mechanism process uses Collecting voice samples, then the feature extraction using FFT that produce two main features that is maximum value of frequency and maximun value of magnitude. After that, k-means alogarithm process is used for grouping voice of male clusteror female cluster. The result of this research uses 20 training data and 20 testing data that will produce 75% level of accuracy for training data and 100% for testing data.
Downloads
Download data is not yet available.
References
[1] Agustini, Ketut. 2007. Biometrik Suara dengan Transformasi Wavelet Berbasis Orthogonal Daubenchies. Gematek Jurnal Teknik Komputer, Volume 9 Nomor 2.
[2] Gunawan, Dadang, Juwono, & Filbert Hilman. 2012. Pengolahan Sinyal Digital dengan Pemrograman MATLAB. Yogyakarta: Graha Ilmu.
[3] Hadi Putra, Prabowo. Penggolongan Suara Berdasarkan Usia dengan Menggunakan Metode K-Means. Surabaya: Institut Teknologi Sepuluh Nopember.
[4] Kurnia Handani, Putri dan Setiawan Arif. 2012. Klastering Suara Berdasarkan Gender dengan Ekstraksi Ciri Berbasis Domain Waktu. Semarang: Seminar Nasional Teknologi Informasi dan Komunikasi Terapan 2012.
[5] Ladjamudin, Bin, Al-Bahra. 2005. Analisa dan Desain Sistem Informasi. Yogyakarta: Graha Ilmu.
[6] Musthofa, Ali. 2007. Sistem Pengenalan Penutur dengan Metode Mel-frequency Wrapping. Malang: Universitas Brawijaya.
[7] Rismawan, Tedy dan Sri, Kusumadewi. 2008. Aplikasi K-Means untuk Pengelompokan Mahasiswa Berdasarkan Nilai Body Mass Index (BMI) dan Ukuran Kerangka. Yogyakarta: Seminar Nasional Aplikasi Teknologi Informasi 2008.
[8] Riyanto, Eko. 2013. Sistem Pengenalan Pengucap Manusia Dengan Ekstraksi Ciri Mfcc Dan Algoritma Jaringan Saraf Tiruan Perambatan Balik Sebagai Pengenalanya, JSIB.
[9] Riyanto, Sugeng. Purwanto, Agus. Dan Supardi. 2009. Algoritma Fast Fourier Transform (FFT) Decimation in Time (dit) dengan Resolusi 1/10 Hertz. Prosiding Seminar Nasional Penelitian, Pendidikan, dan Penerapan MIPA Fakultas MIPA: Universitas Negeri Yogyakarta.
[10] Sianipar, R. H. 2015. Pemrograman Matlab. Yogyakarta: Andi.
[11] V. Oppenheim, Alan. S. Willsky, Alan, dan Nawab, S. Hamid. 2000. Sinyal dan Sistem. Jakarta: Erlangga.
[2] Gunawan, Dadang, Juwono, & Filbert Hilman. 2012. Pengolahan Sinyal Digital dengan Pemrograman MATLAB. Yogyakarta: Graha Ilmu.
[3] Hadi Putra, Prabowo. Penggolongan Suara Berdasarkan Usia dengan Menggunakan Metode K-Means. Surabaya: Institut Teknologi Sepuluh Nopember.
[4] Kurnia Handani, Putri dan Setiawan Arif. 2012. Klastering Suara Berdasarkan Gender dengan Ekstraksi Ciri Berbasis Domain Waktu. Semarang: Seminar Nasional Teknologi Informasi dan Komunikasi Terapan 2012.
[5] Ladjamudin, Bin, Al-Bahra. 2005. Analisa dan Desain Sistem Informasi. Yogyakarta: Graha Ilmu.
[6] Musthofa, Ali. 2007. Sistem Pengenalan Penutur dengan Metode Mel-frequency Wrapping. Malang: Universitas Brawijaya.
[7] Rismawan, Tedy dan Sri, Kusumadewi. 2008. Aplikasi K-Means untuk Pengelompokan Mahasiswa Berdasarkan Nilai Body Mass Index (BMI) dan Ukuran Kerangka. Yogyakarta: Seminar Nasional Aplikasi Teknologi Informasi 2008.
[8] Riyanto, Eko. 2013. Sistem Pengenalan Pengucap Manusia Dengan Ekstraksi Ciri Mfcc Dan Algoritma Jaringan Saraf Tiruan Perambatan Balik Sebagai Pengenalanya, JSIB.
[9] Riyanto, Sugeng. Purwanto, Agus. Dan Supardi. 2009. Algoritma Fast Fourier Transform (FFT) Decimation in Time (dit) dengan Resolusi 1/10 Hertz. Prosiding Seminar Nasional Penelitian, Pendidikan, dan Penerapan MIPA Fakultas MIPA: Universitas Negeri Yogyakarta.
[10] Sianipar, R. H. 2015. Pemrograman Matlab. Yogyakarta: Andi.
[11] V. Oppenheim, Alan. S. Willsky, Alan, dan Nawab, S. Hamid. 2000. Sinyal dan Sistem. Jakarta: Erlangga.