On The Edge Irregular Reflexive k-Labeling of Some Cartesian Product Graphs

  • Merlinda Rosita Universitas PGRI Argopuro Jember
  • Marsidi Marsidi Universitas PGRI Argopuro Jember
  • Dwi Noviani Sulisawati Universitas PGRI Argopuro Jember
  • Ika Hesti Agustin Universitas Jember
Abstract views: 147 , 8691 Publish downloads: 79

Abstract

Let G be a connected and simple graph with vertex set V(G) and edge set E(G). For a graph G, we define k-labeling such that the edges of G are labeled with integers {1,2,3,....,k_e} and the vertices of G are labeled with even integers {0,2,4,....,2k_v}, where k=max{k_e, 2k_v}. If there is a different weight for all edges, then the labeling is called edge irregular reflexive k-labeling. The weight of edge xy, notated by wt(xy) is defined as a sum of label of x, label of xy, and label of y. The minimum k for which G has an edge irregular reflexive k-labeling is defined as reflexive edge strength of G, symbolized by res(G). In this research, we determined the reflexive edge strength of several Cartesian graphs, namely P_5xP_n, S_4xP_n, C_5xC_n, and F_3xP_n.

Keywords: Edge irregular reflexive k-labeling, reflexive edge strength, Cartesian graph.

Downloads

Download data is not yet available.

References

A. A. Nasution, A. Lubis, and M. Firdaus, “Performa Mahasiswa dalam Menjawab Permasalahan Graf pada Matakuliah Matematika Diskrit,” J. Medives J. Math. Educ. IKIP Veteran Semarang, vol. 4, no. 2, p. 295, 2020, doi: 10.31331/medivesveteran.v4i2.1068.

F. Daniel and P. N. L. Taneo, “Pengembangan Buku Ajar Teori Graf untuk Meningkatkan Kemampuan Representasi Matematis Siswa pada Mata Kuliah Matematika Diskrit,” Edumatica J. Pendidik. Mat., vol. 9, no. 02, pp. 64–70, 2019, doi: 10.22437/edumatica.v9i02.7635.

T. A. Aziz, “Eksplorasi Justifikasi dan Rasionalisasi Mahasiswa dalam Konsep Teori Graf,” J. Pendidik. Mat. Raflesia, vol. 06, no. 02, pp. 40–54, 2021, [Online]. Available: https://ejournal.unib.ac.id/index.php/jpmr

M. Rusli and H. Sutopo, “Pengembangan Aplikasi Pewarnaan Graft Berbasis Multimedia Pada Matakuliah Matematika Distrit,” Kalbi Sci., vol. 1, no. 1, pp. 1–12, 2014.

I. H. Agustin, Dafik, Marsidi, and E. R. Albirri, “On the total H-irregularity strength of graphs: A new notion,” J. Phys. Conf. Ser., vol. 855, no. 1, 2017, doi: 10.1088/1742-6596/855/1/012004.

F. Firmansah, “Pelabelan Harmonis Ganjil pada Graf Bunga Double Quadrilateral,” J. Ilm. Sains, vol. 20, no. 1, p. 12, 2020, doi: 10.35799/jis.20.1.2020.27278.

I. H. Agustin, Dafik, M. Imam Utoyo, Slamin, and M. Venkatachalam, “The reflexive edge strength on some almost regular graphs,” Heliyon, vol. 7, no. 5, p. e06991, 2021, doi: 10.1016/j.heliyon.2021.e06991.

J. A. Gallian, “A dynamic survey of graph labeling,” Electron. J. Comb., vol. 1, no. DynamicSurveys, 2018.

I. Hesti Agustin, I. Utoyo, Daflk, and M. D. Venkatachalam, “Edge irregular reflexive labeling of some tree graphs,” J. Phys. Conf. Ser., vol. 1543, no. 1, 2020, doi: 10.1088/1742-6596/1543/1/012008.

D. Indriati, Widodo, and I. Rosyida, “Edge Irregular Reflexive Labeling on Corona of Path and Other Graphs,” J. Phys. Conf. Ser., vol. 1489, no. 1, 2020, doi: 10.1088/1742-6596/1489/1/012004.

D. Tanna, J. Ryan, A. Semaničová-Feňovčíková, and M. Bača, “Vertex irregular reflexive labeling of prisms and wheels,” AKCE Int. J. Graphs Comb., vol. 17, no. 1, pp. 51–59, 2020, doi: 10.1016/j.akcej.2018.08.004.

D. Tanna, J. Ryan, and A. Semaničová-Feňovčíková, “Edge irregular reflexive labeling of prisms and wheels,” Australas. J. Comb., vol. 69, no. 3, pp. 394–401, 2017.

M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, and D. Tanna, “On edge irregular reflexive labellings for the generalized friendship graphs,” Mathematics, vol. 5, no. 4, pp. 1–11, 2017, doi: 10.3390/math5040067.

M. Bača, M. Irfan, J. Ryan, A. Semaničová-Feňovčíková, and D. Tanna, “Note on edge irregular reflexive labelings of graphs,” AKCE Int. J. Graphs Comb., vol. 16, no. 2, pp. 145–157, 2019, doi: 10.1016/j.akcej.2018.01.013.

J. L. G. Guirao, S. Ahmad, M. K. Siddiqui, and M. Ibrahim, “Edge irregular reflexive labeling for disjoint union of Generalized petersen graph,” Mathematics, vol. 6, no. 12, pp. 1–10, 2018, doi: 10.3390/math6120304.

Published
2024-11-15
Section
Articles